
Model 204®

Host Language Interface
Programming Guide

 Version 5 Release 1

HLIP421A

Host Language Interface Programming Guide
Document Number HLIP421A
March 21, 2002

Copyright © 1989 - 2001 Computer Corporation of America.
All rights reserved. Printed in the United States of America.

Access/204™, Advantage/SQL™, CCA Analytics™, Connect�™, Dictionary/204™, MP/204™,
MQ/204™, PQO/204™, WebGate™, and Workshop/204™ are trademarks, and ACCOLADE®,
Imagine®, MarketPulse®, Model 204®, and 204® are registered trademarks of Computer
Corporation of America.

IBM ® is a registered trademark of International Business Machines, Inc.

Windows ® is a registered trademark of Microsoft Corporation.

Other trademarks and trade names are used to identify entities claiming the marks and names
of their products and are hereby acknowledged.

Any rights not expressly granted herein are reserved.

Permission to use this technical documentation (the “Document”) retrieved from the Computer
Corporation of America’s (“CCA”) server is granted, provided that (1) the copyright notice in the
document appears on all copies, (2) use of this Document is for informational and non-
commercial or personal and internal use only, and (3) no modifications are made to this
Document. Use, duplication, or disclosure by the Government is subject to restrictions as set
forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013.

CCA makes no representations about the suitability of the information contained in the
Document. THIS DOCUMENT IS BEING PROVIDED TO YOU “AS IS” ACCORDINGLY, CCA
MAKES NO WARRANTY AS TO ITS ACCURACY OR ITS USE.CCA HEREBY DISCLAIMS ALL
WARRANTIES AND CONDITIONS WITH REGARD TO THIS DOCUMENT, INCLUDING ALL
IMPLIED WARRANTIES AND CONDITIONS OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL CCA BE
LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
INFORMATION CONTAINED IN THIS DOCUMENT.

Any use of the technical documentation or the information contained herein is at the risk of the
user. This document may include technical or other inaccuracies or typographical errors.
Changes are periodically added to this Document and CCA reserves the right to improve or make
changes to the document at any time and without prior notice.

Computer Corporation of America
Corporate Headquarters: CCA International:

500 Old Connecticut Path
Framingham, MA 01701
USA

First Floor, Edinburgh House
43-51 Windsor Road
Slough, Berkshire SL1 2EE
England

Phone: (508) 270-6666 Phone: +44-1753-472800

Fax: (508) 270-6688 Fax: +44-1753-472888

Contents
Model 204®

Host Language Interface Programming Guide

Preface

Audience ... xiii
Introducing Model 204 electronic documentation.. xiii
Contacting CCA Customer Support .. xiii
Notation conventions... xiv

I Basic HLI Processing

1 HLI Threads
In this chapter... 1-1

Overview ... 1-2
For more information .. 1-2

Types of HLI threads... 1-3
IFSTRT and IFDIAL threads... 1-3

IFSTRT threads... 1-4
Different types of IFSTRT threads.. 1-4

Comparison of multiple and single cursor IFSTRT threads .. 1-5
Multiple cursor IFSTRT threads .. 1-7

Starting a multiple cursor IFSTRT thread... 1-7
Sample coding sequence ... 1-7
Advantages of a multiple cursor IFSTRT thread .. 1-8
CCA recommends using a multiple cursor IFSTRT thread 1-9

Single cursor IFSTRT threads... 1-10
Read-only or update privileges... 1-10
Sample coding sequence using a single cursor IFSTRT thread 1-10
Multithreaded IFSTRT application.. 1-11
Sample coding sequence for a multithreaded IFSTRT application 1-11

IFDIAL thread line-at-a-time interface ... 1-13
Starting an IFDIAL thread .. 1-13
Sample coding sequence ... 1-13
Checking the IFREAD and IFWRITE return codes .. 1-14

2 IFSTRT Processing
In this chapter... 2-1

Overview ... 2-2
Host Language Interface Programming Guide iii

For more information .. 2-2
Using record sets .. 2-3

Creating a record set.. 2-3
Current record set .. 2-3

Using value sets.. 2-5
Creating a value set ... 2-5
Current value set .. 2-5

Using lists.. 2-6
Creating a list ... 2-6
Example of list processing.. 2-6

Using cursors on a multiple cursor IFSTRT thread ... 2-8
Opening and closing a cursor .. 2-8
Naming a cursor ... 2-8

Cursor processing ... 2-10
Positioning a cursor.. 2-10
Example of cursor processing .. 2-10

Using the compiled IFAM facility ... 2-13
Advantage of using Compiled IFAM calls... 2-13
Stored compilations and server tables ... 2-13
Compilation name parameter ... 2-13
Naming a compilation... 2-14
Three forms of Compiled IFAM calls .. 2-15
Sharing a compilation... 2-16
Example of a shared compilation ... 2-17
Using variables with precompiled specifications .. 2-18

3 IFDIAL Processing
In this chapter... 3-1

Overview ... 3-2
For more information .. 3-2

Terminal type interface.. 3-3
IFDIAL thread ... 3-3
Communication between Model 204 and an IFDIAL thread................................... 3-3

Sample call sequences ... 3-4
Establishing an IFDIAL connection .. 3-4
Submitting a User Language request... 3-4
Invoking a stored User Language procedure ... 3-5
Using the Model 204 Application Subsystem facility .. 3-5
Checking IFWRITE and IFREAD return codes .. 3-6

Using stored procedures ... 3-8
Operations against the database ... 3-8

Using stored procedures for image processing... 3-9
Sending and receiving Model 204 images ... 3-9
Example of a stored procedure used to process images 3-9
Example of IFDIAL application that processes images .. 3-10

Using a special purpose subroutine .. 3-14
Sample subroutine to convert IFREAD flags.. 3-14

Coding guidelines for IFDIAL applications .. 3-17
Designing your IFDIAL application ... 3-17
Checking the Model 204 completion return code ... 3-17
iv Model 204

Writing special purpose subroutines .. 3-17
Formatting data .. 3-17
Sending and receiving Model 204 images ... 3-18
Handling terminal messages and prompt strings ... 3-18
Use IFATTN to activate ON attention... 3-18
Using stored procedure calls.. 3-18
Using an application subsystem... 3-19

4 Using Completion Return Codes
In this chapter... 4-1

Overview ... 4-2
For more information .. 4-2

Using completion return codes for HLI calls.. 4-3
Checking the completion return code... 4-3

Using the audit trail ... 4-4

II Model 204 Database Processing

5 Model 204 Parameters
In this chapter... 5-1

Overview ... 5-2
For more information .. 5-2

Model 204 Parameters.. 5-3
System parameters ... 5-4

Setting system parameters for an HLI job .. 5-4
User environment control parameters... 5-5

Buffer size and IODEV parameters for an IFDIAL thread 5-5
User table parameters.. 5-5

File parameters ... 5-6
CURFILE parameter and the current file.. 5-6

6 Model 204 Files and Records
In this chapter... 6-1

Overview ... 6-2
For more information .. 6-2

Data files ... 6-3
Entry order file .. 6-3
Unordered file... 6-3
Sorted file ... 6-4
Hashed key file... 6-4
File groups ... 6-4
File model options .. 6-5

Records... 6-6
Internal database record number ... 6-6
Current record and the current file ... 6-6
No current record ... 6-6
Current record on a multiple cursor IFSTRT thread ... 6-7
Current record on a single cursor IFSTRT thread .. 6-7
Host Language Interface Programming Guide v

Specifying a record number ... 6-7

7 Model 204 Fields and Variables
In this chapter... 7-1

Overview ... 7-2
For more information .. 7-2

Field names and values .. 7-3
Rules for naming fields... 7-3
Examples of valid field names.. 7-4
Examples of invalid field names... 7-4
Forming field values ... 7-5
Examples of valid field values .. 7-5
Using quotation marks ... 7-5

Field definitions and attributes .. 7-7
Defining fields... 7-7
When to assign field attributes ... 7-7
Field attributes.. 7-7
Operational characteristics of a field .. 7-7
Storage characteristics of a field .. 7-10
Storage options for preallocated fields ... 7-11
Field updating options .. 7-11
Field security option ... 7-11

Field definitions for group files .. 7-12
KEY and NONKEY inconsistencies.. 7-12
NUMERIC RANGE and NONRANGE inconsistencies... 7-12
VISIBLE and INVISIBLE inconsistencies ... 7-12

Field access violations .. 7-13
Field-level security violations.. 7-13
Model 204 handles field-level violations... 7-13
Field-level violations for IFFTCH, IFUPDT, IFGET, and IFPUT 7-14
LENGTH violations... 7-14
OCCURS violations.. 7-15
Compression violations .. 7-15
UNIQUE violations ... 7-15
NUMERIC VALIDATION violations .. 7-16
AT-MOST-ONE violations .. 7-16

Using %variables .. 7-17
Specifying a %variable name... 7-18
Example of when to use a %variable ... 7-18
Specifying the %variable parameters... 7-18
Using %variables in EDIT and LIST specifications .. 7-19
Example of using a %variable .. 7-19
Assignment of %variables .. 7-20
Assignment of %variables for HLI threads ... 7-21

Using field name variables .. 7-22
Specifying a field variable name (%%variable) .. 7-22
When to use a field name variable ... 7-22
Example of using %%variables .. 7-23
Field name variable errors.. 7-24
vi Model 204

8 Find Criteria for Model 204 Data
In this chapter... 8-1

Overview ... 8-2
For more information .. 8-2

Find criteria in HLI calls... 8-3
Specifying all records to be selected.. 8-3
Specifying particular records to be selected... 8-3

File search operations... 8-5
Index search... 8-5
Direct data search .. 8-5
File search for a group ... 8-6
Summary of file search operations... 8-6

Specifying find criteria: character values... 8-7
Specifying find criteria using character values ... 8-7
Character find criteria with an equality condition.. 8-7
Character find criteria with a range condition ... 8-8

Specifying find criteria: numeric values ... 8-9
Rules for specifying numeric range find criteria ... 8-9
Numeric find criteria with an equality condition .. 8-10
Fieldname=value pairs for numeric find criteria ... 8-10
Numeric find criteria with a range condition ... 8-10
Field attributes and negated numeric find criteria .. 8-11
Specifying value find criteria using an IN RANGE clause 8-12

Defining a numeric value in exponent notation ... 8-13
Specifying find criteria: special conditions... 8-14
Using comparison operators ... 8-16

Operator and value type mismatch .. 8-16
Interpretation of values used in find criteria.. 8-17

Using Boolean operators... 8-19
Using Boolean operators to combine conditions .. 8-19

Specifying find criteria: pattern matching .. 8-21

9 Locking Behavior of HLI Calls
In this chapter... 9-1

Overview ... 9-2
For more information .. 9-2

Locking facility ... 9-3
Locking at the thread level ... 9-3
Enqueuing actions.. 9-3
Getting control of a resource or a record.. 9-4
Specifying wait time within system limits.. 9-4
Releasing a resource or record.. 9-4
Locking behavior of IFSTRT calls .. 9-4
Guidelines to avoid locking conflicts... 9-4

File locking .. 9-6
Read-only file access in IFAM2 and IFAM4 ... 9-6
Using a password with update privileges ... 9-6
Operating system enqueuing ... 9-6

Record locking on found sets.. 9-8
Host Language Interface Programming Guide vii

IFFAC and IFFIND lock in SHR mode.. 9-8
IFFDV locks a value set ... 9-8
IFFNDX locks in EXC mode ... 9-9
IFFWOL does not lock records... 9-12
Caution when using IFFWOL ... 9-13
When to use IFFWOL .. 9-13
IFDSET locks a record set in EXC mode ... 9-14

SHR lock on the current record... 9-15
EXC lock on the current record ... 9-16

Single record enqueue (SRE) locks ... 9-16
Lock pending updates (LPU) locks... 9-17

Record locking: sample processing loops... 9-18
Releasing record locks.. 9-19

IFRELA releases all locks .. 9-19
IFRELR releases a record set lock... 9-19
IFCMMT releases LPU locks.. 9-20
Example of using IFCMMT... 9-20
IFCMTR releases all locks and ends a transaction .. 9-22

Locking functions .. 9-23
Codes used in the table ... 9-23

10 Record Locking Conflicts
In this chapter... 10-1

Overview ... 10-2
For more information .. 10-2

When a record locking conflict occurs... 10-3
Model 204 locks at different levels ... 10-3

Example of record locking conflict... 10-4
IFAM2 application requires an EXEC lock ... 10-4
User Language request opens CARS with read-only privileges 10-5
IFAM2 application attempts to update CARS... 10-5
Resolution of the locking conflict .. 10-5

Handling record locking conflicts... 10-7
Specifying an action when a record locking conflict occurs 10-7
Sample host language error processing... 10-7

Controlling record locking conflicts.. 10-11
Releasing records .. 10-11
Processing update units ... 10-11
Changes to the database ... 10-11

11 Model 204 Security
In this chapter... 11-1

Overview ... 11-2
For more information .. 11-2

Using Model 204 security.. 11-3
Login security ... 11-3
File security .. 11-3
Group security .. 11-3
Record security .. 11-3
Field-level security.. 11-3
viii Model 204

Terminal security .. 11-4

III Job-Related HLI Processing Requirements

12 Tables
In this chapter... 12-1

Overview ... 12-2
For more information .. 12-2

User work area.. 12-3
Managing table sizes .. 12-4

Specifying user table size .. 12-4
Avoiding table full conditions .. 12-4

File group table (FTBL) ... 12-6
Names table (NTBL) ... 12-7
Internal statements/quad table (QTBL) ... 12-8

QTBL requirements for search functions.. 12-8
QTBL requirements for retrieval and update functions... 12-8
QTBL requirements for %variables .. 12-9
QTBL requirements for sort functions .. 12-9
QTBL requirements for cursor functions .. 12-9

Character string table (STBL) ... 12-10
Temporary work table (TTBL) ... 12-11
Compiler variable table (VTBL) ... 12-12

VTBL requirements for search functions .. 12-12
VTBL requirements for retrieval functions .. 12-13
VTBL requirements for sort functions... 12-13
VTBL requirements for cursor functions... 12-13
VTBL requirements for lists and %variables .. 12-13

13 CCA Datasets in HLI Jobs
In this chapter... 13-1

Overview ... 13-2
For more information .. 13-2

CCA datasets for IFAM1 and IFAM4 jobs ... 13-3
Required datasets .. 13-3
Datasets required for a particular Model 204 facility .. 13-3
Specifying a CCA dataset .. 13-3

CCAPRINT file .. 13-4
CCATEMP file ... 13-5

Multiple uses for CCATEMP... 13-5
CCATEMP size requirements .. 13-5
Using secondary CCATEMP datasets ... 13-6

CCASERVR file... 13-7
CCASNAP file ... 13-8
CCASTAT file.. 13-9
CCAGRP file ... 13-10
CCAJRNL and CCAAUDIT files .. 13-11
CHKPOINT file .. 13-12
Host Language Interface Programming Guide ix

14 IFAM2 CICS Processing
In this chapter... 14-1

Overview ... 14-2
For more information .. 14-2

CICS program link-editing requirements ... 14-3
CICS application program work areas .. 14-4

Transaction work area (TWA) .. 14-4
COBOL example of addressing the CICS areas .. 14-4
COBOL2 example of addressing the CICS areas .. 14-5
Temporary storage queue .. 14-6

CICS abend handling .. 14-7
How to deactivate IFAM2 abend handling.. 14-7
Protecting against abend exposure.. 14-7
How IFAM2 abend handling operates .. 14-7

CICS abend handling: macro-level program ... 14-9
CICS abend handling: command-level program ... 14-11

IV HLI Transaction Processing and Recovery

15 HLI Transactions
In this chapter... 15-1

Overview ... 15-2
For more information .. 15-2

Transaction processing ... 15-3
Update unit ... 15-3
Transaction is an update unit ... 15-3

Update unit boundaries ... 15-4
Update units for a multiple cursor IFSTRT thread.. 15-4
Update units for a single cursor IFSTRT thread... 15-4
When an update unit ends ... 15-5
When a transaction backs out .. 15-5

Update units: designing your application .. 15-6
Placing terminal I/O points outside update units .. 15-6
Unit of work for recovery .. 15-6

HLI updating calls and update units .. 15-7
HLI calls that end the current update unit .. 15-7
HLI calls that start an undesignated update unit .. 15-7
HLI calls that start a backoutable update unit .. 15-8

HLI threads and transactions .. 15-9
Logical relationship of threads and transactions .. 15-9

IFAM1 transaction ... 15-10
Single thread .. 15-10

IFAM2 transactions ... 15-11
One or more threads .. 15-11

IFAM4 transactions ... 15-13
One or more threads .. 15-13

Multithreaded IFAM2 and IFAM4 transactions .. 15-14
Multithreaded transaction with read-only IFSTRT threads 15-14
x Model 204

Using IFCMMT in a multithreaded transaction ... 15-14
Committing transactions for lock pending updates files .. 15-16

Lock Pending Updates (LPU) locking mechanism ... 15-16
Minimizing enqueuing conflicts... 15-16
Alternative for minimizing enqueuing conflicts ... 15-16

Transaction backout facility ... 15-18
Requirements for a backout ... 15-18

Using the transaction backout facility .. 15-19
Using IFBOUT to backout updates... 15-19

Using transaction backout logs ... 15-20
Backout log .. 15-20
Constraints log ... 15-20
Issue frequent calls to IFCMMT ... 15-20
Backout logging and CCATEMP space.. 15-20
Lessening CCATEMP space requirements.. 15-21

Transaction backout for LPU files ... 15-22
HLI calls that do not lock records for LPU files... 15-22
Logical inconsistencies with deleted records ... 15-22
Logical inconsistencies using IFFILE ... 15-23

16 Recovery and Checkpointing
In this chapter... 16-1

Overview ... 16-2
For more information .. 16-2

Model 204 recovery facilities... 16-3
IFAM1 roll back recovery.. 16-3

Recovery Logging ... 16-4
Journal ... 16-4
Audit trail .. 16-4

Checkpointing ... 16-5
Enabling the checkpoint facility .. 16-5
Four different checkpointing mechanisms.. 16-5

Automatic checkpointing: CPTIME.. 16-7
When the CPTIME interval expires .. 16-7
Specifying a CPTIME value.. 16-7
CPTIME processing steps.. 16-8

Automatic checkpointing: CPSORT .. 16-9
Specifying a CPSORT value .. 16-9
CPSORT processing steps .. 16-9

IFCHKPT checkpointing.. 16-11
Differences in checkpointing procedure ... 16-11
IFCHKPT processing steps .. 16-11

Checkpoint processing steps: CPTIME main flow .. 16-12
Checkpoint processing steps: CPTQ timer ... 16-13
Checkpoint processing steps: CPTO timer ... 16-14
Checkpoint processing steps: CPTIME time-out... 16-15
Checkpoint processing steps: CPSORT main flow ... 16-16
Checkpoint processing steps: CPSORT time-out ... 16-17
Checkpoint Processing steps: IFCHKPT main flow .. 16-18
Checkpoint processing steps: IFCHKPT time-out... 16-19
Host Language Interface Programming Guide xi

Index
xii Model 204

Preface

Model 204 provides a functionally complete Host Language Interface (HLI),
which enables you to invoke nearly all the system functions from applications
written in programming languages such as COBOL, FORTRAN, PL/1, and
Assembler.

Using the HLI facility, you can access Model 204 from a host language
application and process against the database.

Audience

This guide is directed primarily to the application programmer, who is using the
HLI facility for the first time. The information about multiple cursor IFSTRT
threads is provided for both first-time and experienced HLI application
programmers, who are using that functionality for the first time.

Introducing Model 204 electronic documentation

Model 204 documentation includes several other manuals to which you might
want to refer. The CD-ROM, titled Model 204 Documentation, contains the
most recently released documentation for Model 204.

The document files are in Portable Document Format; each has a PDF file
extension. You can view, navigate, and print the individual manuals, and you
can search the entire document set using Adobe™ Acrobat Reader™ with
Search software, which is also provided on the CD-ROM. Either view the
manuals directly from the CD-ROM, or download the files to a network server.

In the PDF directory, open the README.TXT file on the Windows Notepad.
This file includes instructions to download a copy of the Acrobat Reader with
Search and to open the Model 204 Documentation Library Catalog.

Note: You may access the documentation online or print out copies, as
needed. However, consistent with the terms of your license agreement, you
may not copy or distribute the CD-ROM, or distribute hard-copies to third
parties.

Contacting CCA Customer Support

If you need assistance with this product beyond the provided online help and
documentation, and you have licensed this product directly from CCA, either
call CCA Customer Support at 1-800-755-4222, or access the Customer
Support section of the CCA Web site. The Web address is:

KWWS���ZZZ�FFD�LQW�FRP
Host Language Interface Programming Guide xiii

If you have not licensed this product directly from CCA, please consult your
vendor.

Notation conventions

This manual uses the following standard notation conventions in statement
syntax and examples:

Convention Description

7$%/(Uppercase represents a keyword that you
must enter exactly as shown.

7$%/(�WDEOHQDPH In text, italics are used for variables and for
emphasis. In examples, italics denote a
variable value that you must supply. In this
example, you must supply a value for
tablename.

5($'�>6&5((1@ Square brackets ([]) enclose an optional
argument or portion of an argument. In this
case, specify READ or READ SCREEN.

81,48(�_�35,0$5<�.(< A vertical bar (|) separates alternative options.
In this example, specify either UNIQUE or
PRIMARY KEY.

75867�_�1275867 Underlining indicates the default. In this
example, NOTRUST is the default.

,6�^127�_�/,.(` Braces ({ }) indicate that one of the enclosed
alternatives is required. In this example, you
must specify either IS NOT or IS LIKE.

LWHP���� An ellipsis (. . .) indicates that you can repeat
the preceding item.

LWHP����� An ellipsis preceded by a comma indicates that
a comma is required to separate repeated
items.

$OO�RWKHU�V\PEROV In syntax, all other symbols (such as
parentheses) are literal syntactic elements and
must appear as shown.

QHVWHG�NH\��� �FROXPQBQDPH A double colon followed by an equal sign
indicates an equivalence. In this case, nested-
key is equivalent to column_name.

(QWHU�\RXU�DFFRXQW�

VDOHV��

In examples that include both system-supplied
and user-entered text, or system prompts and
user commands, boldface indicates what you
enter. In this example, the system prompts for
an account and the user enters sales11.
xiv Model 204

File > Save As A right angle bracket (>) identifies the
sequence of actions that you perform to select
a command from a pulldown menu. In this
example, select the Save As command from
the File menu.

Convention Description
Host Language Interface Programming Guide xv

xvi Model 204

Part I
Basic HLI Processing

This part describes the different ways to use the Host Language Interface.
It provides information that is useful for designing and coding HLI
applications.

1
HLI Threads

In this chapter

• Overview

• Types of HLI threads

• IFSTRT threads

• Comparison of multiple and single cursor IFSTRT threads

• Multiple cursor IFSTRT threads

• Single cursor IFSTRT threads

• IFDIAL thread line-at-a-time interface
Host Language Interface Programming Guide 1-1

Overview

A thread is a connection to Model 204. An HLI application must start a thread
to do processing under Model 204. This chapter describes Model 204 threads
for application programmers who are using the Host Language Interface
facility.

Read the section “Multiple cursor IFSTRT threads” on page 1-7 if you are using
multiple cursor functionality in your host language program for the first time.

For more information

Refer to Chapter 15 for information about HLI threads and Model 204
transactions. Refer to the Model 204 Host Language Interface Reference
Manual for examples of HLI applications that use different types of threads and
for information about IFAM1, IFAM2, and IFAM4.
1-2 Model 204

Types of HLI threads

A thread is a connection to Model 204. A thread is required to connect a user
to Model 204.

The total number of Model 204 threads available to connect users is set by the
system administrator. The total number of threads that are available is equal to
the number of IODEV statements specified in the Model 204 online run. A host
language application must start at least one thread in order to access
Model 204 and process against the database.

Refer to the Model 204 Host Language Interface Reference Manual for
information about IODEVs required for HLI threads.

The host language application initiates a request to start a connection to
Model 204 by issuing a call to IFSTRT (or IFSTRTN) or IFDIAL (or IFDIALN). If
a connection is available for the host language program, Model 204 starts the
thread.

Once a thread is started, the host language application can issue other HLI
calls to Model 204.

IFSTRT and IFDIAL threads

There is a fundamental difference between IFSTRT and IFDIAL threads, based
on the underlying call protocols, which provide the host language interface to
Model 204. The protocols operate differently and provide different types of host
language functionality.

You must know which type of functionality is required for a particular application
to determine which type of thread to use. You must code only the calls,
specifications, and corresponding program logic that are available for use with
the type of thread that you start.

The functionality of IFSTRT and IFDIAL threads is described in the following
sections.

Note: In IFAM2 under z/OS or VSE, you can elect to start both types of threads
in a host language job; however, IFDIAL and IFSTRT threads function
independently of one another as separate transactions. Refer to Chapter 15 for
a description of HLI threads and Model 204 transactions in IFAM1, IFAM2, and
IFAM4.
Host Language Interface Programming Guide 1-3

IFSTRT threads

An IFSTRT thread provides a user interface between a host language
application and Model 204 that allows the program to issue calls that perform
functions against the database similarly to Model 204 User Language and
Command Language.

For example, the IFOPEN call, which is comparable to the Model 204 OPEN
command, can be issued on an IFSTRT thread to open a file for processing. An
IFFIND call, which is comparable to the User Language FIND statement, can
be issued to create a found set of records. The IFCLOSE call, which is
comparable to the Model 204 CLOSE command, closes a file on an IFSTRT
thread.

A number of HLI calls perform retrieval and update functions that are available
for use with an IFSTRT thread.

Using an IFSTRT thread, you can run a batch host language application that
functions similarly to a User Language request. The IFSTRT application can
issue HLI calls that access the database and process data.

Different types of IFSTRT threads

The following types of IFSTRT threads are available using the HLI facility:

• Multiple cursor IFSTRT thread

• Single cursor IFSTRT thread, with update privileges

• Single cursor IFSTRT thread, with read-only privileges (available only in
IFAM2 and IFAM4)

Each IFSTRT thread supports one type of functionality. You must code only the
calls, specifications, and corresponding program logic that are valid for the
particular type of IFSTRT thread that you start.

For example, the call that opens a cursor, IFOCUR, is valid only on a multiple
cursor IFSTRT thread; a particular updating call, IFPUT, is valid only on a single
cursor IFSTRT thread with update privileges. Refer to the Model 204 Host
Language Interface Reference Manual for a description of individual calls.
1-4 Model 204

Comparison of multiple and single cursor IFSTRT threads

There is a basic difference in functionality between a multiple cursor IFSTRT
thread, which functions very much like User Language by allowing access to
multiple files and record sets, and a single cursor IFSTRT thread, which limits
access to one file and one record set at a time.

Table 1-1 summarizes the differences in access to files and data between
multiple cursor and single cursor IFSTRT threads.

Note: Update units must begin and end on the same thread. If using IFDTHRD,
assure that any in-progress update unit ends on the current thread by issuing
an IFCMMT or IFCMTR on the current thread before the IFDTHRD call.

Table 1-1. Comparison of multiple cursor and single cursor IFSTRT
threads

Item Multiple cursor thread Single cursor thread

Number of threads
per application

One • One (IFAM1)

• Multiple (IFAM2, IFAM4)

Number of active
update units

Only between first update
and commit

Continuously

Transaction commit Explicitly, at user option Explicitly, at user option

IFCMMT or IFCMTR should
always be called before an
IFDTHRD

Number of open files
or groups
concurrently per
thread

Multiple One (last one opened)

Current file is... 1. Default

2. Specify (IN FILE)

Last one opened

Number of found sets
per thread

Multiple One

Found set availability Retained until explicitly
released

Not retained

Retrieval of records
or values from sets

Multiple times Once

Current set is... Specify (set name) Last one found

Number of current
records per thread

Multiple One

Current record is... Specify (cursor) Next record in current set
Host Language Interface Programming Guide 1-5

For host language applications that use IFSTRT threads, CCA recommends
that you use a multiple cursor IFSTRT thread. See “Advantages of a multiple
cursor IFSTRT thread” on page 1-8.
1-6 Model 204

Multiple cursor IFSTRT threads

A multiple cursor IFSTRT thread supports access to multiple:

• Files or groups, using functions that specify which file or group

• Record or value sets, using functions that specify which set

• Records or values, using functions that specify which record or value (that
is, which cursor)

With a multiple cursor IFSTRT thread, the file, set, record, or value that is
specified in the HLI call is the one that is current for processing. For calls that
use a set or cursor parameter, you must always code the specification to
indicate which set, record, or value is current.

For calls that provide an optional file specification, if you do not specify a file,
the file that was opened last is current by default.

You can use a multiple cursor IFSTRT thread in an IFAM1, IFAM2, or IFAM4
host language job.

Starting a multiple cursor IFSTRT thread

To start a multiple cursor IFSTRT thread, you must specify a value of 2 for the
thread type indicator (THRD-TYP is 2).

For example, the following COBOL statement in an IFAM2 job starts a multiple
cursor IFSTRT thread:

&$//�´,)6757µ�86,1*�5(7&2'(�/$1*�,1'�/2*,1�7+5'�7<3�7+5'�,'�

where the following variables are specified in the WORKING-STORAGE
SECTION of the program:

• LOGIN is USERABC;ECP; (login account name is USERABC, and
password is ECP)

• LANG-IND is 2 (COBOL)

• THRD-TYP is 2 (a multiple cursor IFSTRT thread)

• THRD-ID is a required output integer variable for the thread identifier

Note: In IFAM1, if you do not specify a thread type, the thread defaults to a
single cursor IFSTRT thread (THRD-TYP is 0). Refer to the Model 204 Host
Language Interface Reference Manual for a description of the IFSTRT call.

Sample coding sequence

Using a multiple cursor IFSTRT thread, a host language application might
perform database operations in the following order:
Host Language Interface Programming Guide 1-7

1. Start the multiple cursor thread (IFSTRT)

2. Open Customer file (IFOPEN)

3. Open Orders file (IFOPEN)

4. In Customers, find all records (IFFIND)

5. Open the cursor to the Customers found set (IFOCUR)

6. Loop until there are no more Customer records:

– Fetch the customer name (IFFTCH)

– In Orders, find Order records for this customer (IFFIND)

– Open a cursor to the Orders found set (IFOCUR)

– Loop until there are no more Order records:

Fetch the order name (IFFTCH)

Print a report line.

Close the cursor to the Orders found set (IFCCUR)

7. Close the cursor to the Customers found set (IFCCUR)

8. Finish processing (IFFNSH)

Advantages of a multiple cursor IFSTRT thread

Compared to a single cursor IFSTRT thread, a multiple cursor IFSTRT thread
provides the more powerful host language interface to Model 204. A multiple
cursor IFSTRT thread:

• Always uses a single connection, which allows a more efficient host
language program to be coded.

• Activates a transaction only for updating calls allowing for checkpoints to be
taken between update units.

• Allows more facile access to the Model 204 database, with access to
multiple files or groups, sets, records, and values on a single thread.

• Provides a broader range of database operations with certain calls for list
and record processing that are only available using this type of thread.

• Provides a processing environment that is similar to User Language by
allowing a record set to be:

– Retained until explicitly released, so that, once created, a record set is
available for processing until it is released by the host language pro-
gram.

– Symbolically referenced using the name of the function that created it,
which is analogous to using a statement label in User Language.
1-8 Model 204

CCA recommends using a multiple cursor IFSTRT thread

For an application that requires access to multiple files concurrently, CCA
recommends that you use a multiple cursor IFSTRT thread and that you do not
run a multithreaded HLI job (in IFAM2 or IFAM4).

For an application that requires access to a single file, or to one file at a time,
you can use either a multiple cursor IFSTRT thread or a single cursor IFSTRT
thread.

Note: If you are performing update processing using one thread, checkpointing
is easier on a multiple cursor IFSTRT thread.
Host Language Interface Programming Guide 1-9

Single cursor IFSTRT threads

A single cursor IFSTRT thread allows access to logical database entities, such
as files and record sets, in a serial processing mode. Each single cursor
IFSTRT thread processes a single file or group at a time and, for the current file
or group, can have active one current record set, one current record, one
current value set, and one current value at a time.

For each single cursor IFSTRT thread, all processing against one file or group
is completed before processing against the next file or group is begun.

Note that, in IFAM2 and IFAM4, a host language application can process
records from different files and groups or different sets of records from the
same file or group by using a technique called multithreading. See
“Multithreaded IFSTRT application” on page 1-11 for more information about
multithreading.

Read-only or update privileges

In IFAM1, a single cursor IFSTRT thread provides update privileges. In IFAM2
and IFAM4, you can specify a single cursor IFSTRT thread with update
privileges by specifying a value of 1 for the THRD-TYP parameter.

For example, the following COBOL statement in an IFAM2 application starts a
single cursor IFSTRT thread with update privileges:

&$//�´,)6757µ�86,1*�5(7&2'(�/$1*�,1'�/2*,1�7+5'�7<3�7+5'�,'�

where the following variables are specified in the WORKING-STORAGE
SECTION of the program:

• LOGIN is USERABC;ECP; (login account name is USERABC and
password is ECP)

• LANG-IND is 2 (COBOL)

• THRD-TYP is 1 (a single cursor IFSTRT thread with update privileges)

• THRD-ID is a required output integer variable for the thread identifier

Note: In IFAM2 and IFAM4 with a read-only IFSTRT thread (THRD-TYP is 0),
you cannot issue calls that perform updating functions. You can open files or
groups using passwords with update privileges, but no updates are allowed. If
a host language program issues an updating call on a read-only IFSTRT
thread, Model 204 returns an error code of 40.

Sample coding sequence using a single cursor IFSTRT thread

Using a single cursor IFSTRT thread, a host language application might
perform database operations in the following order:

1. Start a standard thread (IFSTRT)
1-10 Model 204

2. Open Customer file (IFOPEN)

3. In Customers, find all records (IFFIND)

4. Loop until there are no more Customer records:

– Get the customer record (IFGET)

– Update the customer record (IFPUT)

– Print a report line

5. Finish processing (IFFNSH)

Multithreaded IFSTRT application

You can use two or more single cursor IFSTRT threads to process data from
multiple files and record sets in an IFAM2 or IFAM4 application.

In a multithreaded application, using two or more single cursor IFSTRT threads,
a host language program can perform parallel processing of records from
different files and groups, or different sets of records from the same file or
group.

Each single cursor IFSTRT thread processes one single file or group at a time
and, for the current file or group, can have active one current record set, one
current record, one current value set, and one current value. The IFSTHRD call
switches from one thread to another, thereby establishing the current thread.

Update units must begin and end on the same thread. If using IFDTHRD,
assure that any in-progress update unit ends on the current thread by issuing
an IFCMMT or IFCMTR on the current thread before the IFDTHRD call.

Refer to Chapter 15 for information about a multithreaded transaction.

Sample coding sequence for a multithreaded IFSTRT application

Assume, for example, that you want to cross-reference a customer file with an
accounts receivable file. The host language program uses two single cursor
IFSTRT threads, one to process each file.

Using two single cursor IFSTRT threads, a host language application performs
database operations in the following order:

1. Start a standard thread (IFSTRT)

2. Open Customer file (IFOPEN)

3. In Customers, find all records (IFFIND)

4. Start a standard thread (IFSTRT)

5. Open Accounts Receivable file (IFOPEN)

6. Switch to the Customer thread (IFSTHRD)
Host Language Interface Programming Guide 1-11

7. Loop until there are no more Customer records:

– Get the Customer record (IFGET)

– Save the value of the Customer account number.

– Switch to the Accounts Receivable thread (IFSTHRD)

– Find any matching Account Receivable records (IFFIND)

– Loop until there are no more matching records:

Get the Accounts Receivable record (IFGET)

Update the Accounts Receivable record (IFPUT)

– Switch back to the Customer thread (IFSTHRD)

8. Finish processing (IFFNSH)

Note: To relate multiple records within the same file, you apply the same logic
used to process records in separate files.

Refer to the Model 204 Host Language Interface Reference Manual for a
sample HLI application that uses multiple IFSTRT threads.
1-12 Model 204

IFDIAL thread line-at-a-time interface

An IFDIAL thread provides a line-at-a-time terminal type interface between a
host language application and Model 204. With an IFDIAL thread, a host
language program functions as a terminal, transmitting a line of input to
Model 204 or receiving a line of output from Model 204.

An IFDIAL thread allows a host language application to issue Model 204
commands, such as LOGIN, LOGWHO, LOGCTL, and MONITOR, or other
commands that perform operations against the database, for example, to
execute a User Language request. An IFDIAL thread also allows the host
language program to receive messages and data from Model 204.

An IFDIAL thread supports the use of the companion calls, IFREAD and
IFWRITE, to communicate with Model 204.

Note: If you are using an IFDIAL thread, you must code the calls,
specifications, and corresponding program logic that are valid for use with this
thread.

Refer to the Model 204 Host Language Interface Reference Manual for an
example of an HLI application that uses an IFDIAL thread. Also refer to that
manual for descriptions of HLI calls.

Starting an IFDIAL thread

To start an IFDIAL thread, you must specify the IFDIAL call in your host
language program. For example, the following COBOL statement starts an
IFDIAL thread:

&$//�´,)',$/µ�86,1*�5(7&2'(�/$1*�,1'�

where the following variable is specified in the WORKING-STORAGE
SECTION of the program:

/$1*�,1'�LV����&2%2/��

Refer to the Model 204 Host Language Interface Reference Manual for a
description of the IFDIAL call.

Sample coding sequence

Using an IFDIAL thread, a host language application might perform database
operations in the following order:

1. Start a Model 204 terminal interface thread (IFDIAL)

2. Log in to Model 204 (IFWRITE)

3. Receive the login message from Model 204(IFREAD)

4. Read the first record from an input file that contains a User Language
Host Language Interface Programming Guide 1-13

request into a program storage area (named, for example, IN-AREA)

For example, the input file might contain the following records:

%(*,1

35,17�·+(//2·

(1'�

5. Send a line of input (BEGIN) to Model 204 (IFWRITE using IN-AREA).

6. Loop until there are no more records in the input file:

– Read the next record from the input file into the program storage area.

– Send a line of input to Model 204 (IFWRITE using IN-AREA).

7. Receive a line of output from Model 204 (IFREAD).

8. Finish processing. (IFHNGUP)

Note: If the User Language request generated multiple lines of output, the
IFDIAL application loops using IFREAD to get each line of output.

Checking the IFREAD and IFWRITE return codes

Before issuing IFREAD or IFWRITE, the IFDIAL application must check the
Model 204 completion return code from the previous IFREAD or IFWRITE to
determine which call is required next by Model 204. For a return code of 1,
IFWRITE is required next; for a return code of 2, IFREAD is required next.

The previous sample coding sequence shows just the basic program logic
without the necessary return code checking.

See Chapter 3 for more information about checking IFREAD and IFWRITE
return codes.
1-14 Model 204

2
IFSTRT Processing

In this chapter

• Overview

• Using record sets

• Using value sets

• Using lists

• Using cursors on a multiple cursor IFSTRT thread

• Cursor processing

• Using the compiled IFAM facility
Host Language Interface Programming Guide 2-1

Overview

This chapter describes how to perform basic IFSTRT data processing
operations for application programmers who are using the Host Language
Interface facility. Read the section “Using cursors on a multiple cursor IFSTRT
thread” on page 2-8, if you are using multiple cursor IFSTRT thread
functionality in your HLI application for the first time.

For more information

Refer to Chapter 6 for a description of files and records. Refer to Chapter 7 for
a description of fields and variables. Refer to Chapter 8 for more information
about specifying find criteria.
2-2 Model 204

Using record sets

A set of records is a group of records found in a file or group that meet the
conditions of selection criteria specified in an HLI call. For example:

1$0(� �60,7+

$*(� ����

Refer to Chapter 8 for information about specifying find conditions.

Creating a record set

Use the following HLI calls to select records from a file or group and create a
record set for processing:

• IFFAC

• IFFIND

• IFFNDX

• IFFWOL

Current record set

The set of records currently being processed is the current set.

On a multiple cursor IFSTRT thread, you must explicitly specify the record set
in the HLI call. On a single cursor IFSTRT thread, the current set is the one last
created.

The COBOL coding excerpt below shows an IFFIND call on a multiple cursor
IFSTRT thread that creates a found set of records (named WODOCS) and a
call to IFRELR, which releases the record set when processing against the
records is complete. The IFRELR call specifies the WODOCS record set.

:25.,1*�6725$*(�6(&7,21�

��&$//�3$506�

��5(7&2'(3,&������&203�6<1&�

��'2&6�63(&3,&�;�����9$/8(�·,1�),/(�352)6�

)'�6(;)(0$/(�2&&83$7,21 '2&725�25�'(17,67�(1'�·��

��'2&6�1$0(3,&�;����9$/8(�·:2'2&6�·�

�

�

�

352&('85(�',9,6,21�

�

�

�

),1'�&5($7(6�5(&25'�6(7�

Host Language Interface Programming Guide 2-3

&$//��,)),1'��86,1*�5(7&2'(�'2&6�63(&�'2&6�1$0(��

3(5)250�86(5�68%5287,1(�5(&25'�352&(66,1*�/223

7+(1�5(/($6(�5(&25'�6(7�

&$//��,)5(/5��86,1*�5(7&2'(�'2&6�1$0(��

�

�

�

See “Example of cursor processing” on page 2-10 for an example that
illustrates using a cursor to reference a found set. Refer to the Model 204 Host
Language Interface Reference Manual for a description of HLI calls used to
process record sets.
2-4 Model 204

Using value sets

A set of values is a group of unique values of a field found in a file that meet the
conditions of selection criteria in an HLI call. For example, for a field named
AGENT, the following data values may be found stored in the file: SMITH,
JONES, and GREEN.

Refer to Chapter 8 for information about specifying find conditions.

Creating a value set

Use the IFFDV call to select field values from a file and create a value set for
processing.

You can create value sets using only fields with the FRV (For Each Value) or
the ORDERED attribute.

Refer to Chapter 7 for information about field attributes.

Current value set

The set of values currently being processed is the current set.

On a multiple cursor IFSTRT thread, you must explicitly specify the value set in
the HLI call. On a single cursor IFSTRT thread, the current set is the one last
created.

Refer to the Model 204 Host Language Interface Reference Manual for a
description of HLI calls used to process value sets.
Host Language Interface Programming Guide 2-5

Using lists

A list is a user-defined entity that holds copies of a found set of records for
processing.

List processing is similar to set processing. However, placing records in a found
set on a list allows the enqueue locks to be freed so that records can be
accessed by other users. Also, you can modify the record set by adding
additional records to the list or removing records from the list.

Creating a list

Use the following HLI calls to place records from a found set on a list for
processing:

• IFPROLS, on a multiple cursor IFSTRT thread

• IFLIST, on a single cursor IFSTRT thread

Use IFPROL to add a record to a list, or IFRRFL to remove a record from a list.
On a multiple cursor IFSTRT thread, use IFCLST to clear a list and IFRRFLS
to remove records from a list.

Refer to Chapter 9 for information about record locking. Refer to the Model 204
Host Language Interface Reference Manual for a description of IFPROLS,
IFLIST, IFPROL, and IFRRFL calls used to process lists.

Example of list processing

The following COBOL coding excerpt calls IFPROLS to place records from a
found set (named WODOCS) that contains female doctors and dentists on a list
(called INCOME).

Subsequent calls to IFOCUR and IFFTCH allow the application to process
records on the list. For example, a record processing loop might examine a
record for INCOME values and report data in different annual income ranges.

When record processing is finished, IFRRFL removes the records from list
INCOME.

:25.,1*�6725$*(�6(&7,21�

��&$//�3$506�

��5(7&2'(3,&������&203�6<1&�

��),1'�3$506�

��),1'�1$0(3,&�;����9$/8(�·:2'2&6�·�

��'2&6�63(&3,&�;�����9$/8(�

·6(;)(0$/(�2&&83$7,21 '2&725�25�'(17,67�(1'�·��

��/,67�3$506�

��/,67�63(&3,&�;�����9$/8(�

·,1�:2'2&6�21�/,67�,1&20(�·�

��/,67�1$0(3,&�;����9$/8(�·,1&20(�·�

��&85625�3$506�
2-6 Model 204

��&85625�63(&3,&�;�����9$/8(�

·21�/,67�,1&20(�,1�25'(5�%<�,1&20(�$07�·�

��&85625�1$0(3,&�;����9$/8(�·'2&,1&�·�

��)(7&+�3$506�

��',5(&7,213,&���&203�6<1&�9$/8(�·�·�

��(',7�63(&�3,&�;�����9$/8(�

·(',7��661�1$0(�,1&20(�$07��$����$�����-�����·�

��:25.�5(&�

��:25.�6613,&������

��:25.�1$0(3,&�;�����

��:25.�,1&20(�$073,&������

�

�

�

352&('85(�',9,6,21�

�

�

�

),1'�&5($7(6�5(&25'�6(7�

&$//��,)),1'��86,1*�5(7&2'(�),1'�63(&�),1'�1$0(�

&$//��,)352/6��86,1*�5(7&2'(�/,67�63(&�

&$//��,)2&85��86,1*�5(7&2'(�&85625�63(&�&85625�1$0(��

3(5)250�86(5�68%5287,1(�/223�72�352&(66�5(&25'6�,1�/,67

,1&/8'(6�&$//6�6+2:1�%(/2:�72�,))7&+�$1'

,)55)/�72�5(029(�5(&25'�)520�/,67�:+(1�),1,6+('�352&(66,1*

&$//��,))7&+��86,1*�5(7&2'(�:25.�5(&�',5(&7,21�

��&85625�1$0(�(',7�63(&��

�

�

�

&$//��,)55)/��86,1*�5(7&2'(�/,67�1$0(�&85625�1$0(���

�

�

�

Host Language Interface Programming Guide 2-7

Using cursors on a multiple cursor IFSTRT thread

A cursor is a user-defined entity that identifies an existing record or value set
that has been named on a multiple cursor IFSTRT thread.

Opening and closing a cursor

Two basic functions are required to manipulate each cursor on a multiple cursor
IFSTRT thread:

• IFOCUR specifies a cursor name and opens the cursor to a set that has
been previously established by the successful execution of one of the
following calls using the Compiled IFAM feature:

– IFFAC

– IFFDV

– IFFIND

– IFFNDX

– IFFWOL

– IFSORT

– IFSRTV

You can open more than one cursor against the same named set to
maintain different positions within the set; and you can open several
cursors against several different record sets. You can also open a cursor
on a list.

You can also establish a cursor by using IFFRN or IFSTOR and then
reference that cursor by using the name of the saved compilation.

• IFCCUR closes the named cursor and indicates that processing against the
cursor is complete.

Naming a cursor

The following guidelines apply for naming cursors:

• Name must be unique.

• Specify the cursor name as a short character string; the maximum length is
32 characters.

• Cursor name must begin with a letter (A-Z or a-z), which can be followed by
one or more occurrences of:

– Letter (A-Z or a-z)

– Digit (0-9)

– Period (.)

– Underscore (_)
2-8 Model 204

• Avoid using a User Language keyword for a cursor name. If in another
specification you refer to a cursor name that is a keyword, Model 204 might
incorrectly interpret the name.
Host Language Interface Programming Guide 2-9

Cursor processing

Positioning a cursor

In order to process records from a found set or a list on a multiple cursor
IFSTRT thread, you must first open a cursor by issuing a call to IFOCUR that
specifies the found set or list. Then use IFFTCH to advance to the next record.

Once you use IFFTCH to position the cursor, issue any of the following single
record function calls:

• IFDALL

• IFDREC

• IFDVAL

• IFOCC

• IFPROL

• IFRRFL

• IFUPDT

If you need to obtain the internal database number of the record in the current
cursor, use IFRNUM.

The IFFRN and IFSTOR functions implicitly allocate and open a cursor. The
current record is the record whose number is specified in IFFRN, or the record
just stored by IFSTOR. You can then manipulate the record using one of the
single record function calls listed above.

Refer to the Model 204 Host Language Interface Reference Manual for a
description of the IFOCUR, IFFTCH, IFRNUM, IFFRN, IFSTOR, and the single
record level IFSTRT thread calls, and for coding examples that process against
the database using a multiple cursor IFSTRT thread.

Example of cursor processing

The following COBOL coding excerpt opens a cursor to a found set (named
FDFORD), which contains FORD records from a CARS file.

The application processes records inside a record processing loop (UPDATE-
LOOP) using IFFTCH and performs different actions depending on the year. If
the record is 1980 or later, the application updates the record by deleting the
color blue. The application also deletes any CARS record that is older than (that
is, year is earlier than) 1980.

Note: All calls in the records processing loop reference the found set using the
cursor name (CRFORD).
2-10 Model 204

:25.,1*�6725$*(�6(&7,21�

��&$//�3$506�

��5(7&2'(3,&������&203�6<1&�

��),1'�3$506�

��),1'�1$0(3,&�;����9$/8(�·)')25'�·�

��'2&6�63(&3,&�;�����9$/8(�

·,1�),/(�&$56�)'�0$.()25'�(1'�·��

��&28173,&������&203�6<1&�

��&85625�3$506�

��&85625�63(&3,&�;�����9$/8(�·,1�)')25'�·��

��&85625�1$0(3,&�;����9$/8(�·&5)25'�·�

��)(7&+�83'$7(�3$506�

��',5(&7,213,&���&203�6<1&�9$/8(�·�·�

��(',7�63(&�3,&�;�����9$/8(�

·(',7��0$.(�02'(/�<($5�&2/25��$�����$�����-����$������·�

��&203�1$0(3,&�;����9$/8(�·(')25'�·�

��:25.�5(&�

��:25.�0$.(3,&�;�����

��:25.�02'(/3,&�;�����

��:25.�<($53,&������

��:25.�&2/253,&�;�����

�

�

�

��),(/'6�3$506�

��),(/'�/,673,&�;����9$/8(�·&2/25�·�

��'),(/'�9$/8(3,&�;����9$/8(�·%/8(�·�

��'),(/'�1$0(3,&�;����9$/8(�·&2/25�·�

��),(/'�&28173,&�;�����

352&('85(�',9,6,21�

�

�

�

),1'�&5($7(6�5(&25'�6(7�

&$//��,))$&��86,1*�5(7&2'(�'2&6�63(&�&2817�),1'�1$0(�

029(�&2817�72�727�5(&6�

35,17�·727$/�180%(5�2)�)25'�&$56�,6�·�727�5(&6�

23(1�&85625�72�)281'�6(7�$1'�'2�352&(66,1*�/223

&$//��,)2&85��86,1*�5(7&2'(�&85625�63(&�&85625�1$0(��

3(5)250�83'$7(�/223�817,/�727�5(&6�,6�(48$/�72�=(52��

�

�

�

83'$7(�/223�68%5287,1(�72�352&(66�5(&25'6�,1�&85625

)(7&+�$�5(&25'��

,)������25�/$7(5��&2817�2&&855(1&(6�2)�&2/25

,)�21(�25�025(��7+(1�'(/(7(�9$/8(�2)�%/8(�$1'�83'$7(�5(&

(/6(��,)�($5/,(5�7+$1�������'(/(7(�7+(�5(&25'

Host Language Interface Programming Guide 2-11

83'$7(�/223�

&$//��,))7&+��86,1*�5(7&2'(�:25.�5(&�',5(&7,21�

&85625�1$0(�(',7�63(&��

,)�:25.�<($5�,6�*7������7+(1

&$//��,)2&&��86,1*�5(7&2'(�),(/'�&2817�&85625�1$0(�

��),(/'�/,67��

029(�),(/'�&2817�72�727�),(/'6�

,)�727�),(/'6�,6�*7�=(52�7+(1

��&$//��,)'9$/��86,1*�5(7&2'(�'),(/'�1$0(�'),(/'�9$/8(�

����&85625�1$0(��

(/6(

��&$//��,)'5(&��86,1*�5(7&2'(�&85625�1$0(���

68%75$&7���)520�727�5(&6��

�

�

�

2-12 Model 204

Using the compiled IFAM facility

The Compiled Inverted File Access Method (IFAM) facility allows certain
functions executed on IFSTRT threads to be compiled and stored. You can
execute a compilation at a later time by specifying the name under which it was
stored. You do not need to recompile the stored call.

Advantage of using Compiled IFAM calls

In the standard HLI implementation (without Compiled IFAM),
Model 204 handles each call separately, looking up field names in the data
dictionary, and parsing character parameter strings for each execution of a call.

Using the Compiled IFAM facility, you can request that Model 204 perform the
initial parsing and dictionary reference once and then refer to the stored
information in later calls.

Using the Compiled IFAM facility reduces the amount of CPU time and disk I/O
that Model 204 uses to satisfy program calls.

Stored compilations and server tables

Model 204 stores compilations of HLI calls in the server tables: NTBL, QTBL,
VTBL, and STBL. Refer to Chapter 12 for information about the Model 204
server tables and HLI calls.

You can use the IFFLUSH call to delete compilations that are no longer needed
from these tables to make room for new compilations. IFFLUSH functions
differently on standard and multiple cursor IFSTRT threads. Refer to the
Model 204 Host Language Interface Reference Manual for a description of
IFFLUSH.

Certain calls, when issued on a multiple cursor IFSTRT thread, require that you
use Compiled IFAM. You must specify a compilation name for the following HLI
calls on a multiple cursor IFSTRT thread:

• Find functions: IFFAC, IFFDV, IFFIND, IFFNDX, IFFWOL

• Sort functions: IFSKEY, IFSORT, IFSRTV

Each of these calls establishes a found set and IFOCUR uses the compilation
name of the previously compiled call to reference the named set. For example,
IFOCUR might open a cursor to a found set (named FDFORD) that was
established by a previously compiled IFFIND call.

You must also specify a compilation name for IFFRN, but this name is not
referenced by IFOCUR. It is referenced by subsequent single record functions.

Compilation name parameter

A name parameter is required in all Compiled IFAM calls.
Host Language Interface Programming Guide 2-13

The name parameter specifies a character string that is used to identify the
compilation. For example, you might specify a compilation name of ORDER1
for an IFFIND call as shown in the following example:

&$//�´,)),1'µ�86,1*�67$786�,1'��25'(5�63(&��25'(5��

where:

• STATUS-IND is an integer variable for the Model 204 return code.

• ORDER-SPEC is a find specification that creates a found set of records
using the ORDERS file.

• ORDER1 is the name that uniquely identifies the IFFIND compilation.

The Compiled IFAM form of IFFIND differs from the standard form of the call,
which does not include the compilation name parameter. For example, on a
single cursor IFSTRT thread you can specify the IFFIND call without using the
Compiled IFAM facility, as shown in the following example:

&$//�´,)),1'µ�86,1*�67$786�,1'��25'(5�63(&�

See Table 2-1 on page 2-16 for a list of HLI calls that can be used with the
Compiled IFAM facility.

Naming a compilation

The following guidelines apply for compilation names on any type of IFSTRT
thread:

• The compilation name is a required input parameter for all Compiled IFAM
calls. A null name string is the same as an omitted parameter.

• The name must be unique.

• Specify the compilation name as a short character string; the maximum
length is 32 characters.

In addition, on a multiple cursor IFSTRT thread, the following guidelines apply
for compilation names:

• Compilation name must begin with a letter (A-Z or a-z), which can be
followed by one or more occurrences of:

– Letter (A-Z or a-z)

– Digit (0-9)

– Period (.)

– Underscore (_)

• Avoid using a User Language keyword for a compilation name. If in another
specification you refer to a compilation name that is a keyword, Model 204
might incorrectly interpret the name.
2-14 Model 204

In addition, on a single cursor IFSTRT thread, any characters except the
following are valid in the compilation name:

• Blank space

• Comma (,)

• Left parenthesis (()

• Right parenthesis ())

• Equal sign (=)

• Semicolon (;)

Three forms of Compiled IFAM calls

Three forms of IFSTRT thread calls are available using the Compiled IFAM
facility. These calls function in different ways. The following options are
available to accommodate different programming styles:

• You can use a single call that compiles and executes with the name
parameter that identifies the compilation. When the call executes,
Model 204 saves the compiled version of the call.

For example, when the following IFFIND call is executed, Model 204 stores
the compilation as ORDER1:

&$//�´,)),1'µ�86,1*�67$786�,1'�25'(5�63(&�25'(5��

When the same IFFIND call is executed again or when another IFFIND call
containing the same name parameter (ORDER1) is executed, Model 204
ignores the find specification (ORDER-SPEC) and uses the stored
compilation without requiring recompilation.

• You can use two calls, one is compile-only (HLI call with C suffix) and one
is execute-only (HLI call with E suffix), with the name parameter that
identifies the compilation for the two phases of Compiled IFAM processing:
compilation and execution.

This option involves a two-call procedure, useful in loop processing. Use
the compilation form of the call outside the loop to compile (but not execute)
the call specification. For example, you might issue the compilation-only
form of IFFIND as shown in the following example:

&$//�´,)),1'&µ�86,1*�67$786�,1'�25'(5�63(&�25'(5��

Within the loop, issue the execution form of the call, thereby executing the
previously compiled call. For example, you might issue the execute-only
form of IFFIND as shown in the following example:

&$//�´,)),1'(µ�86,1*�67$786�,1'�25'(5���
Host Language Interface Programming Guide 2-15

Table 2-1 lists the HLI calls that are used with the Compiled IFAM facility. An
asterisk (*) indicates that you must use the compiled form of the call with a
multiple cursor IFSTRT thread.

Sharing a compilation

Some calls that use the Compiled IFAM facility can share the specifications that
Model 204 compiles for other functions.

The following calls can share precompiled specifications:

• IFGET, IFMORE, and IFPUT

Table 2-1. Compiled IFAM calls

Compute and execute Compile-only Execute-only

IFCTO IFCTOC IFCTOE

IFFAC* IFFACC IFFACE

IFFDV* IFFDVC IFFDVE

IFFIND* IFFINDC IFFINDE

IFFNDX* IFFNDXC IFFNDXE

IFFRN* IFFRNC IFFRNE

IFFTCH IFFTCHC IFFTCHE

IFFWOL* IFFWOLC IFFWOLE

IFGET IFGETC IFGETE

IFGETV IFGTVC IFGTVE

IFGETX IFGETC IFGETXE

IFMORE IFMOREC IFMOREE

IFMOREX IFMOREC IFMORXE

IFOCC IFOCCC IFOCCE

IFFOCUR* IFOCURC IFOCURE

IFPUT IFPUTC IFPUTE

IFSKEY* IFSKYC IFSKYE

IFSORT* IFSRTC IFSRTE

IFSRTV* IFSTVC IFSTVE

IFSTOR IFSTRC IFSTRE

IFUPDT IFUPDTC IFUPDTE
2-16 Model 204

When an IFGET, IFMORE, or IFPUT call is compiled, Model 204 does not
save the data area address of the HLI application program. The application
program can manipulate its buffers and data freely without losing any of the
benefits of Compiled IFAM.

• IFFAC and IFFIND

• IFUPDT with a precompiled IFFTCH

Example of a shared compilation

An example of a shared compilation on a multiple cursor IFSTRT thread is an
IFUPDTE (execute-only) call that updates the current record using data
previously returned by IFFTCH.

In this example, using Compiled IFAM and specifying certain of the same
parameter values as the previously compiled IFFTCH, IFUPDTE does the
following:

• Points to the same buffer area. (Both calls use WORK-REC, which contains
the data fields defined in working storage.)

• References the same cursor. (In this example, the cursor name is
NAMERECS.)

• Uses an identical edit specification, which describes the format of the data
in the buffer.

IFUPDTE executes using the name of the previously compiled IFFTCH call. In
this example, the IFFTCH compilation name is CUSTNAME.

The following COBOL coding excerpt shows the IFUPDTE and IFFTCH shared
compilation. Refer to the Model 204 Host Language Interface Reference
Manual for descriptions of individual HLI calls.

:25.,1*�6725$*(�6(&7,21�

��:25.�5(&�

��:25.�6613,&������

��:25.�1$0(3,&�;�����

�

�

�

��&$//�3$506�

��5(7&2'(3,&������&203�6<1&�

��&85625�1$0(3,&�;����9$/8(�·&8671$0(�·�

��(',7�63(&3,&�;�����9$/8(�

·(',7��661�1$0(��$����$������·��

��&203�1$0(3,&�;����9$/8(�·1$0(5(&6�·�

��',5(&7,213,&���&203�6<1&�9$/8(�·�·�

�

�

�

352&('85(�',9,6,21�
Host Language Interface Programming Guide 2-17

�

�

�

&$//��,))7&+��86,1*�5(7&2'(�:25.�5(&�',5(&7,21�&85625�1$0(�

(',7�63(&�&203�1$0(��

3(5)250�83'$7(�23(5$7,21�029(�63$&(6�72�:25.�1$0(�

&$//��,)83'7(��86,1*�5(7&2'(�:25.�5(&�&203�1$0(��

�

�

�

Using variables with precompiled specifications

Use %variables and field name variables (that is, %%variables) to make small
but regular changes to precompiled specifications. You can assign values for
%variables by including the variable buffer and variable specification
parameters in HLI calls.

See Chapter 7 for more information about %variables.
2-18 Model 204

3
IFDIAL Processing

In this chapter

• Overview

• Terminal type interface

• Sample call sequences

• Using stored procedures

• Using stored procedures for image processing

• Using a special purpose subroutine

• Coding guidelines for IFDIAL applications
Host Language Interface Programming Guide 3-1

Overview

This chapter describes basic processing using an IFDIAL thread for application
programmers who are using the Host Language Interface facility.

For more information

Refer to Chapter 1 for more information about IFDIAL threads.

Refer to the Model 204 Host Language Interface Reference Manual for
information about HLI jobs using IFDIAL threads and descriptions of HLI calls
that are available using an IFDIAL thread.
3-2 Model 204

Terminal type interface

IFDIAL thread

An IFDIAL thread provides a line-at-a-time terminal emulation type interface
between a host language application and Model 204. With an IFDIAL thread, a
host language program functions as a terminal, transmitting a line of input to
Model 204 and receiving a line of output from Model 204.

An IFDIAL thread supports the use of the companion calls, IFREAD and
IFWRITE, to communicate with Model 204. Use an IFREAD call to transmit
data (a line of output) from Model 204 to your application program and an
IFWRITE call to transmit data (a line of input) back to Model 204.

Using an IFDIAL thread, you can pass Model 204 commands, ad hoc or stored
User Language procedures, or Application Subsystem Management
applications from an HLI application (batch) program to Model 204. You can
also extract data from Model 204, use the data in your program, and put the
results into your Model 204 database.

Note: If you are using an IFDIAL thread, you must code the calls,
specifications, and corresponding program logic that are valid for use with this
thread.

Refer to Chapter 1 for more information about IFDIAL threads. Refer to the
Model 204 Host Language Interface Reference Manual for a description of HLI
calls.

Communication between Model 204 and an IFDIAL thread

The underlying communications mechanism for a terminal type interface drives
IFDIAL thread functioning. A parent-child protocol directs the interchange
between the partner programs, that is, between Model 204 (the parent) and the
IFDIAL thread (the child).

In all communications between IFDIAL and Model 204, Model 204 is the parent
and directs the interchange. The IFDIAL thread is the child. If the Model 204
side wants input, the IFDIAL thread is required to send input.

Also, an IFDIAL thread must process all output from Model 204 that normally
goes to a terminal, such as character prompts for logons and passwords or
warning and broadcast messages.
Host Language Interface Programming Guide 3-3

Sample call sequences

Establishing an IFDIAL connection

The HLI application initiates the request to establish an IFDIAL connection to
Model 204. To start an IFDIAL thread, the HLI application program must specify
the IFDIAL call.

For example, a host language application might issue calls in the following
order to establish an IFDIAL connection to Model 204:

1. IFDIAL to start an IFDIAL thread.

2. IFREAD to receive the Model 204 response.

3. IFWRITE to log in to Model 204.

4. IFREAD to receive the Model 204 response.

5. IFWRITE to supply a password.

6. IFREAD to receive the Model 204 response:

��

��SHUIRUP�,)',$/�SURFHVVLQJ�
��

To disconnect the IFDIAL thread and finish processing, the HLI application
issues an IFHNGUP call. The following sections show sample call sequences
once the IFDIAL connection is established.

Submitting a User Language request

Once the connection is established, you can use an IFDIAL thread to submit an
ad hoc User Language request to Model 204.

For example, to submit a User Language request after an IFDIAL connection is
established (see the previous section), an HLI application might read an input
file containing a User Language request into a program storage area, and then
issue HLI calls in the following order:

��

��HVWDEOLVK�WKH�,)',$/�FRQQHFWLRQ�
��

1. IFWRITE inside a program loop, to issue the User Language statements
until all statements are sent to Model 204 (by referencing the program
storage area).

2. IFREAD to receive the Model 204 response.

The program code might loop, issuing the IFREAD to read each line of
output from Model 204 until there is no more output in the storage buffer.
3-4 Model 204

Note: This sample shows the basic IFWRITE and IFREAD sequence for
submitting a User Language request. Always code your IFDIAL application to
check the completion return code for these calls. See “Checking IFWRITE and
IFREAD return codes” on page 3-6 for information about checking the return
codes for IFREAD and IFWRITE.

Invoking a stored User Language procedure

Once the connection is established, you can use an IFDIAL thread to invoke a
stored User Language procedure.

For example, to invoke a stored User Language procedure after an IFDIAL
connection is established, an HLI application might issue calls in the following
order:

��

��HVWDEOLVK�WKH�,)',$/�FRQQHFWLRQ�
��

1. IFWRITE to open a file.

2. IFREAD to receive the Model 204 response.

3. IFWRITE to supply a password, if required.

4. IFREAD to receive open file messages from Model 204.

5. IFWRITE to issue the command to include the stored User Language pro-
cedure.

Note: Always code your IFDIAL application to check the completion return
codes for IFWRITE and IFREAD. See “Checking IFWRITE and IFREAD return
codes” on page 3-6 for information about checking these return codes.

Using the Model 204 Application Subsystem facility

Once the connection is established, you can use an IFDIAL thread to access
the Model 204 Application Subsystem facility.

For example, to use the Model 204 Application Subsystem facility after an
IFDIAL connection is established (see page 3-4) an HLI application might issue
calls in the following order:

��

��HVWDEOLVK�WKH�,)',$/�FRQQHFWLRQ�
��

1. IFWRITE to invoke an Application Subsystem (APSY).

2. IFREAD to receive the results of the APSY execution.

Note: Make sure to use an Application Subsystem that is designed to run on a
line-at-a-time IFDIAL thread. Also, always code your
Host Language Interface Programming Guide 3-5

Note: IFDIAL application to check the completion return codes for IFWRITE
and IFREAD, as described in “Checking IFWRITE and IFREAD return codes”.

Refer to the Model 204 User Language Manual for information about the
Application Subsystem facility.

Checking IFWRITE and IFREAD return codes

Always code your IFDIAL application to check the Model 204 completion return
code from the previous IFWRITE or IFREAD call before issuing the next
IFWRITE or IFREAD.

The IFDIAL application must issue IFREAD or IFWRITE depending on which
call Model 204 expects next. Model 204 indicates which of these calls is
required next by returning a particular completion code from the previous
IFREAD or IFWRITE.

If the Model 204 completion return code from the previous IFREAD or IFWRITE
equals 1, the IFDIAL application must issue an IFWRITE. Or, if the return code
equals 2, the application must issue an IFREAD.

This is necessary to ensure proper communication with Model 204 during
IFDIAL processing.

In the sample coding sequence on page 3-4 (and also in Chapter 1) the IFDIAL
application loops to send lines of input to Model 204 by issuing multiple calls to
IFWRITE.

This loop must be controlled by checking the value of the return code each time
before the next IFWRITE call is issued. For example, the following COBOL
statement is coded:

3(5)250�:5,7(�/223�817,/�5(7&2'(� ���25�,15(&6� ���

where INRECS is a counter that is decremented for each record sent from the
input file, and when INRECS equals zero, all User Language statements have
been sent to Model 204.

If during processing Model 204 encounters an error in one of the User
Language statements from the input file, the IFDIAL application must receive
the error message from Model 204 by issuing IFREAD before issuing another
call to IFWRITE.

Any number of other types of messages might be issued by Model 204, for
example, messages from the operator, that might interrupt an IFWRITE
processing loop and must be received by the IFDIAL application.

Also, the same type of checking must be done for an IFREAD processing loop.
For example, a loop that issues IFREAD to read each line of output from
Model 204 until there is no more output in the storage buffer must be controlled
by checking the return code for a value of 1, which indicates that an IFWRITE
call is required next.
3-6 Model 204

See Figure 3-2 on page 3-10 for an example of return code checking in a
COBOL program that uses IFDIAL processing.
Host Language Interface Programming Guide 3-7

Using stored procedures

An HLI call in a host language program that invokes another program to
perform a specific function, or functions, is called a stored procedure call. The
stored procedure can be a User Language procedure or a set of Model 204
commands.

As briefly outlined on page 3-5, you can use an IFDIAL thread for stored
procedure calls.

Operations against the database

You can use a stored procedure with an IFDIAL thread to perform different
types of operations against the database, depending on the needs of the HLI
application.

Although you can use IFDIAL applications with stored procedures for any type
of terminal activity, the following examples are the most common:

• Sending and receiving Model 204 images, which are defined in the program
storage area of the HLI application.

• Issuing Model 204 commands, for any Model 204 command that can be
issued at a terminal such as MONITOR, and receiving output generated by
Model 204.

• Transferring procedures in and out of Model 204 files, which allows you to
maintain User Language procedures in external software configuration
management systems.

The following sections describe IFDIAL processing using stored User
Language procedures with images.
3-8 Model 204

Using stored procedures for image processing

Sending and receiving Model 204 images

Because User Language allows Model 204 images to be read or written to a
terminal, an HLI application using an IFDIAL thread that operates in terminal
emulation mode can send and receive Model 204 images.

A Model 204 image is a User Language feature that allows a request to read
and process terminal input or input from sequential files. An image describes
the format of an external record.

User Language statements can refer to each item described in the image
definition. Using the images facility, you can open a file, read records to the
image, write records to a terminal or to a file, and close the file. This capability
allows an application to write multiple output files and reports based on a single
pass of the database.

The syntax for reading and writing images with User Language is as follows:

23(1�^7(50,1$/�_��9$5`�)25�^,1387�>287387@�_�287387�>,1387@

�����_�,1287`

5($'�>,0$*(@�LPDJHQDPH�)520�^7(50,1$/�_��9$5`

>352037�^·VWULQJ·�_��9$5`@

:5,7(�>,0$*(@�LPDJHQDPH�21�^7(50,1$/�_��9$5`

&/26(�^7(50,1$/�_��9$5`

Refer to the Model 204 User Language Manual for more information about
images.

Example of a stored procedure used to process images

The User Language example in Figure 3-Figure 3-1. is a stored procedure,
named IFDIAL-WRITE, which finds records and writes images to the IFDIAL
application in Figure 3-Figure 3-2..

Figure 3-1. User Language stored procedure example

�23(1�02'(/�����'7�),/(

23(1�9(+,&/(6

%(*,1

�86(5�/$1*8$*(�352*5$0�72�6+2:�86(�

�2)�,)',$/�$1'�,0$*(6�

,0$*(�9(+,&/(6�/,67

�����9/�%2'<�,6�675,1*�/(1��
Host Language Interface Programming Guide 3-9

�����9/�&2/25�,6�675,1*�/(1��

�����9/�0$.(�,6�675,1*�/(1���

�����9/�02'(/�,6�675,1*�/(1���

�����9/�<($5�,6�3$&.('�',*,76��

(1'�,0$*(

�23(1�3$7+�72�,)',$/�352*5$0

23(1�7(50,1$/�)25�287387

35(3$5(�,0$*(�9(+,&/(6�/,67

�),1'�$1'�:5,7(�,0$*(6�72�,)',$/�352*5$0

)281'B6(7��),1'�$//�5(&25'6�)25�:+,&+�0$.()25'�$1'�&2/25 %/8(

�����������(1'�),1'

�����/223��)25�($&+�5(&25'�,1�)281'B6(7

�����������9(+,&/(6�/,67�9/�%2'<� �%2'<

�����������9(+,&/(6�/,67�9/�&2/25� �&2/25

�����������9(+,&/(6�/,67�9/�0$.(� �0$.(

�����������9(+,&/(6�/,67�9/�02'(/� �02'(/

�����������9(+,&/(6�/,67�9/�<($5� �<($5

����������:5,7(�,0$*(�9(+,&/(6�/,67�21�7(50,1$/

�����(1'�)25

(1'�

Example of IFDIAL application that processes images

The COBOL example in Figure 3-Figure 3-2. performs IFDIAL communication
to Model 204 using the stored procedure, IFDIAL-WRITE, shown in Figure
3-Figure 3-1.. See “Using a special purpose subroutine” on page 3-14 for the
CVTFLAG subroutine.

Figure 3-2. Sample COBOL program using a stored procedure

�7+,6�,6�$�6$03/(�&2%2/�352*5$0�:+,&+�'2(6�

�,)',$/�&20081,&$7,21�72�0�����

�,'(17,),&$7,21�',9,6,21�

�352*5$0�,'�

��������,)',$/8/�

�(19,5210(17�',9,6,21�

�,1387�287387�6(&7,21�

�),/(�&21752/�

��������6(/(&7�5(3257�),/(�$66,*1�72�87�6�5(3257�

��������6(/(&7�,1387�),/(�$66,*1�72�87�6�,1387�

3-10 Model 204

�'7�',9,6,21�

�),/(�6(&7,21�

�)'�5(3257�),/(

��������/$%(/�5(&25'6�$5(�20,77('

��������%/2&.�&217$,16���5(&25'6

��������'7�5(&25'�,6�287�%8))(5�

����287�%8))(5�3,&�;������

�:25.,1*�6725$*(�6(&7,21�

����(5525�)81&7,21�3,&�;����9$/8(�63$&(6�

����',63/$<�67$786�,1'�3,&������9$/8(�=(52�

����:6�287387�5(3257�/,1(�

�������:6�&&7/�&+$5�3,&�;�9$/8(�63$&(6�

�������0$.(�3,&�;�����

�������),//(5�3,&�;����9$/8(�63$&(6�

�������02'(/�3,&�;�����

�������),//(5�3,&�;����9$/8(�63$&(6�

�������%2'<�3,&�;����

�������),//(5�3,&�;����9$/8(�63$&(6�

�������<($5�3,&�;����

�������),//(5�3,&�;����9$/8(�63$&(6�

�������&2/25�3,&�;����

����287387�$5($�3,&�;������9$/8(�63$&(6�

����,1387�$5($�3,&�;������

����)250$7('�,1387�$5($�5('(),1(6�,1387�$5($�

�������%2'<�3,&�;����

�������&2/25�3,&�;����

�������0$.(�3,&�;�����

�������02'(/�3,&�;�����

�������<($5�3,&�;����

����,17(*(5�&$//�$5*6�&203�6<1&�

�������67$786�,1'�3,&������9$/8(����

�������:5,7(�67$7�3,&������

�������5($'�67$7�3,&������

�������/$1*8$*(�,1'�3,&������9$/8(���

����,)5($'�)/$*6�

�������,)5($'�06*�/(1*7+�3,&������&203�6<1&�

�������,)',$/�(5525�06*�3,&�;�9$/8(��1��

�������(5525�06*�9$/8(��<��

�������,)',$/�1(:�3$*(�3,&�;�9$/8(��1��

�������1(:�3$*(�9$/8(��<��

�������,)',$/�86(5�5(67$57('�3,&�;�9$/8(��1��

�������86(5�5(67$57('�9$/8(��<��

�������,)',$/�3$66:25'�5(48(67�3,&�;�9$/8(��1��

�������3$66:25'�5(48(67�9$/8(��<��

�������,)',$/�5($'�5(48(67�3,&�;�9$/8(��1��

�������5($'�5(48(67�9$/8(��<��

�������,)',$/�,1)2�06*�3,&�;�9$/8(��1��

�������,1)2�06*�9$/8(��<��
Host Language Interface Programming Guide 3-11

����675,1*�&$//�$5*6�

�������,1387�)/$*6�3,&�;�

�������0����(55�0(66$*(�3,&�;�����9$/8(�63$&(6�

�������90&)�&+$11(/�3,&�;����9$/8(��0���90,2��

�������/2*21�06*�3,&�;�����9$/8(��/2*21�683(5./8*(��

�������/2*21�3$66:25'�3,&�;����9$/8(��3,*)/285��

�������5(48(67�1$0(�3,&�;�����9$/8(��,�,)',$/�:5,7(��

�352&('85(�',9,6,21�

�0$,1�5287,1(�

�,1,7,$/,=$7,21�

����23(1�287387�5(3257�),/(

����&$//��,)',$/1�

��������86,1*�67$786�,1'��/$1*8$*(�,1'��90&)�&+$11(/�

����',63/$<��,)',$/1�67$786����67$786�,1'�

����,)�67$786�,1'�,6�127�(48$/�=(52

��������029(��,)',$/1���72�(5525�)81&7,21

��������3(5)250�(5525�5287,1(�

�/2*21�352&(66

����029(�/2*21�06*�72�287387�$5($�

����&$//��,):5,7(��86,1*�:5,7(�67$7��287387�$5($�

����',63/$<��,):5,7(�67$786����:5,7(�67$7�

����,)�:5,7(�67$7� ��

�������3(5)250�5($'�/,1(�7+58�5($'�/,1(�(;,7

���������817,/�5($'�67$7� ���25�5($'�67$7� ����

�������,)�3$66:25'�5(48(67
���������',63/$<��3$66:25'�5(48(67����,)',$/�3$66:25'�5(48(67�

���������029(�63$&(6�72�287387�$5($

���������029(�/2*21�3$66:25'�72�287387�$5($

���������&$//��,):5,7(��86,1*�:5,7(�67$7��287387�$5($

���������3(5)250�5($'�/,1(�7+58�5($'�/,1(�(;,7

�����������817,/�5($'�67$7� ���25�5($'�67$7� ����

�0$,1�/223�

�������67$57�86(5�/$1*8$*(�75$16$&7,21�72�5(75,(9(

�������5(&25'6��

�������,):5,7(�86(6�5(48(67�1$0(�72�(;(&87(�

�������6725('�86(5�/$1*8$*(�352&('85(�,)',$/�:5,7(�

�������$7�1(;7�,1387�5(48(67��7(50,1$7(�

��������029(�63$&(6�72�287387�$5($�

��������029(�5(48(67�1$0(�72�287387�$5($�

��������&$//��,):5,7(��86,1*�:5,7(�67$7��287387�$5($�

��������3(5)250�0$,1�/223�817,/�5($'�67$7�127� ��

��������*2�72�7(50,1$7,21�

�0$,1�/223�

����3(5)250�5($'�/,1(�7+58�5($'�/,1(�(;,7�

����029(�&255(6321',1*�)250$7('�,1387�$5($�72
3-12 Model 204

����������:6�287387�5(3257�/,1(�

���:5,7(�287�%8))(5�)520�:6�287387�5(3257�/,1(�

��5($'�/,1(�&$//6�&97)/$*��&219(57�)/$*6��

��72�352&(66�02'(/�����287387�)520�,)5($'�

�5($'�/,1(�

����029(�63$&(6�72�,1387�$5($�

����&$//��,)5($'��86,1*�5($'�67$7��,1387�$5($��,1387�)/$*6�

����,)�5($'�67$7� �����*2�72�7(50,1$7,21�

����',63/$<��,)5($'�67$786����5($'�67$7����'$7$����,1387�$5($�

����&$//��&97)/$*��86,1*�,1387�)/$*6��,)5($'�)/$*6�

����029(�=(52�72�,1387�)/$*6�

����,)�86(5�5(67$57('

��������*2�72�7(50,1$7,21�

����,)�(5525�06*�25�,1)2�06*

��������*2�72�5($'�/,1(�

�5($'�/,1(�(;,7�

����(;,7�

�(5525�5287,1(�

����029(�67$786�,1'�72�',63/$<�67$786�,1'�

����',63/$<��&5,7,&$/�(5525�(1&2817(5('�:,7+�)81&7,21���

��������(5525�)81&7,21����:,7+�$�5(7851�&2'(�2)���

��������',63/$<�67$786�,1'�

����029(�63$&(6�72�(5525�)81&7,21�

����029(�63$&(6�72�0����(55�0(66$*(�

����,)�(5525�)81&7,21�127�(48$/��,)+1*83��7+(1

��������3(5)250�7(50,1$7,21�

�7(50,1$7,21�

����&/26(�5(3257�),/(�

����&$//��,)+1*83��86,1*�67$786�,1'�

����,)�67$786�,1'�127�(48$/���7+(1

��������029(��,)+1*83��72�(5525�)81&7,21

��������3(5)250�(5525�5287,1(�

����6723�581�
Host Language Interface Programming Guide 3-13

Using a special purpose subroutine

Sample subroutine to convert IFREAD flags

IFREAD returns a message descriptor flag as a series of bits. Each bit indicates
the type of data received, the password prompt, error messages, and so on.
The CVTFLAG (convert flags) subroutine example in Figure 3-Figure 3-3.
translates the IFREAD flags to COBOL character strings and refers to them
with Level 88 statements.

See Figure 3-3 on page 3-14 for a sample COBOL program that calls this
subroutine after issuing the IFREAD call. Refer to the Model 204 Host
Language Interface Reference Manual for a description of the IFREAD call.

Figure 3-3. Sample assembly language subroutine to convert IFREAD
flags

&97)/$*�&6(&7��

�������(175<�&97)/$*

�6$03/(�$66(0%/<�/$1*8$*(�352*5$0�)25�75$16/$7,1*�7+(

�0(66$*(�'(6&5,3725�),(/'�5(7851('�$6�7+(�7+,5'�$5*80(17

�2)�7+(�,)5($'�&$//�

�7+,6�02'8/(�(;3(&76�7:2�3$5$0(7(56��7+(�),567�,6�7+(

�7+,5'�3$5$0(7(5�5(7851('�%<�7+(�,)5($'�&$//��7+(�0(66$*(

�'(6&5,3725�),(/'��7+,6�),(/'�6+28/'�%(�'(),1('�$6�

������06*�'(6&�),(/'�3,&785(������&203�6<1&�

�7+(�6(&21'�3$5$0(7(5�,6�$1����/(9(/�:25.,1*�6725$*(�$5($

�'(),1('�$6�)2//2:6�

������,)5($'�)/$*6�

���������,)5($'�06*�/(1*7+��������3,&785(������&203�6<1&�

���������,)',$/�(5525�06*���������3,&785(�;��9$/8(�·1·�

���������(5525�06*���������������������������9$/8(�·<·

���������,)',$/�1(:�3$*(����������3,&785(�;��9$/8(�·1·�

���������1(:�3$*(����������������������������9$/8(�·<·

���������,)',$/�86(5�5(67$57('����3,&785(�;��9$/8(�·1·�

���������86(5�5(67$57('����������������������9$/8(�·<·

���������,)',$/�3$66:25'�5(48(67��3,&785(�;��9$/8(�·1·�

���������3$66:25'�5(48(67��������������������9$/8(�·<·

���������,)',$/�5($'�5(48(67������3,&785(�;��9$/8(�·1·�

���������5($'�5(48(67������������������������9$/8(�·<·

���������,)',$/�,1)2�06*����������3,&785(�;��9$/8(�·1·�

���������,1)2�06*���������������������������9$/8(�·<·�

�7+(�&97)/$*6�68%5287,1(�029(6�7+(�),567�+$/)�:25'�2)�7+(

�0(66$*(�'(6&5,3725�),(/'�0,186���72�7+(�),(/'�'(6&5,%('

�$%29(�$6�·,)5($'�06*�/(1*7+·��7+,6�,6�7+(�758(�/(1*7+

�2)�7+(�'7�5(&(,9('��7+(�68%5287,1(�7+(1�(;$0,1(6�7+(

�)/$*6�,1�7+(�7+,5'�%<7(�2)�7+(�0(66$*(�'(6&5,3725�),(/'
3-14 Model 204

�$1'�6(7�7+(�&255(6321',1*�)/$*6�,1�7+(�&2%2/�:25.,1*

�6725$*(�$5($�72�·<·��($&+�7,0(�7+(�68%5287,1(�,6�&$//('

�$//�7+(�)/$*6�$5(�6(7�72�·1·�7+(1�7+(�$335235,$7(�)/$*6

�$5(�6(7�72�·<·��7+(�:25.,1*�6725$*(�),(/'6�0867�%(�$55$1*('

�$6�'(6&5,%('�$%29(��7+(�/(9(/����),(/'6�$5(�237,21$/�

�127(��7+,6�68%5287,1(�,6�$1�(;$03/(�21/<�$1'�,6�127�6833257('

�������%<�&20387(5�&25325$7,21�2)�$0(5,&$�

���������5(*(48�����������������6(7�5(*,67(5�6<0%2/6

���������670��5���5������5������6$9(�5(*,67(5

���������/5���������������������6(7�%$6(�5(*,67(5

��������86,1*�&97)/$*�5���������(67$%/,6+�$''5(66,1*

���������/5���5���5�������������6(7�83�6$9(�$5($�/,1.$*(

���������/$���5���6$9($5($

���������67���5�����5���

���������67���5�����5���

��������352*5$0�/2*,&�67$576�+(5(

�$''5(66�3$5$0(7(56

���������/����5����5���������5���,1387�3$5$0(7(5�$''5(66

���������/����5����5���������5���287387�3$5$0(7(5�/,67

��������86,1*�:63$50�5�������$''5(66,1*�72�:6�3$50�$5($

�5(7851�/(1*7+�72�&$//(5

���������/����5����5���������5���3$5$0(7(5�:25'

���������65/��5��������������6+,)7����%,76�/()7��/($9,1*�/(1*7+

���������6+���5�� <����������'(&5(0(17�/(1*7+�%<���$&78$/�/(1�

���������67+��5��/(1*7+������029(�$&78$/�/(1*7+�72�86(5

�5(7851�)/$*6�72�&$//(5

���������09,��(06*�&·1·������&/($5�$//�(5525�0(66$*(6

���������09&��(06*���)/$*/(1����(06*�3523$*$7(�·1·�72�$//�)/$*6

���������70�����5���;·��·����&/$66�(�06*�"

���������%=�����������������12��1(;7�7(67

���������09,��(06*�&·<·������<(6��7851�21�)/$*

���������70�����5���;·��·����1(:�3$*(�"

���������%=�����������������12��1(;7�7(67

���������09,��13$*(�&·<·�����<(6��7851�21�)/$*

���������70�����5���;·��·����5(67$57('�"

���������%=�����������������12��1(;7�7(67

���������09,��5(67$57�&·<·���<(6��7851�21�)/$*

���������70�����5���;·��·����3$66:25'�"

���������%=�����������������12��1(;7�7(67

���������09,��3$66:25'�&·<·��<(6��7851�21�)/$*

���������70�����5���;·��·����5($'�352037�"

���������%=�����������������12��1(;7�7(67

���������09,��5($'�&·<·������<(6��7851�21�)/$*

���������70�����5���;·��·����&/$66�,�0(66$*(

���������%=��������12�������$//�'21(

���������09,��,1)2�&·<·������<(6��7851�21�)/$*

�5(7851�72�&$//(5
Host Language Interface Programming Guide 3-15

���������/����5���6$9($5($���5(6725(�&$//(56�5(*,67(56

���������/0���5���5������5���

���������65���5���5����������&/($5�5���-867�)25�*22'�)250

���������%5������������������5(7851�72�&$//(5

��������'523�5���5��(1'�$''5(66,1*�72�%$6(��:63$50

���������/725*

6$9($5($�'6��������������)·�·

:63$50���'6(&7���������0$3�2)�&2%2/�:25.,1*�6725$*(�5(7�$5*6�

/(1*7+���'6�+·�·�������/(1*7+�2)�0(66$*(

(06*�����'6�;����������(5525�&/$66�2)�06*

13$*(����'6�;����������1(:�3$*(�,1',&$725

5(67$57��'6�;����������86(5�5(67$57('

3$66:25'�'6�;����������3$66:25'�352037

5($'�����'6�;����������5($'�352037

,1)2�����'6�;����������,�&/$66�0(66$*(

)/$*/(1���(48��(06*���180%(5�2)���%<7(�)/$*6

���������(1'�
3-16 Model 204

Coding guidelines for IFDIAL applications

Designing your IFDIAL application

Design your HLI application program and User Language procedure to work
together.

For example, your HLI application reads a list of accounting numbers to
generate a report. The HLI application sends an account number to the User
Language procedure. After the User Language procedure receives the account
record and performs data manipulation, Model 204 returns the data to the HLI
program for final reporting.

When the HLI program sends an account number, the User Language
procedure must be expecting it. Conversely, when the User Language
procedure sends a completed record, the HLI program must be expecting it.
The two programs must be synchronous so that the data is usable.

To minimize programming time and effort and to maximize processing
efficiency, write a general purpose IFDIAL application that uses basic IFREAD
and IFWRITE logic but does not perform data operations.

Design your generic IFDIAL application so that it can be used with a variety of
User Language procedures. Allow the User Language procedure to do the
work of manipulating data and formatting reports.

Note that CCA provides a BATCH2 utility that allows you to run a User
Language procedure without having to code an IFDIAL application. Refer to the
Model 204 User Language Manual for information about the BATCH2 utility.

Checking the Model 204 completion return code

Always check the Model 204 completion return code from the IFREAD or
IFWRITE call previously issued to ensure that the next call issued by the HLI
application is the one that is expected by Model 204.

A return code of 1 from IFREAD or IFWRITE requires an IFWRITE next; or, a
return code of 2 requires an IFREAD next.

Writing special purpose subroutines

Write special purpose subroutines to simplify IFDIAL logic, such as for login or
user restart.

Formatting data

The format of the data to be exchanged in your HLI application and User
Language programs must agree.
Host Language Interface Programming Guide 3-17

Sending and receiving Model 204 images

When sending and receiving Model 204 images, be sure that the working
storage definition and the image correspond.

To send images from your User Language procedure to your IFDIAL host
language program, use the following statement:

:5,7(�,0$*(�LPDJHQDPH�72�7(50,1$/�

To transmit data from your IFDIAL host language program to your User
Language procedure, use the following statement:

5($'�,0$*(�LPDJHQDPH�)520�7(50,1$/�

See “Sending and receiving Model 204 images” on page 3-18 for more
information about images.

Handling terminal messages and prompt strings

Because IFDIAL uses a terminal-type interface, you are responsible for
messages and prompt strings.

Encapsulate IFREAD and IFWRITE calls in your subroutines or paragraphs to
filter out messages and error codes and return only the expected data to the
application.

Note: IFREAD returns message descriptor flags as a series of bits. Each bit
indicates the type of data received, the password prompt, error messages, and
so on.

The CVTFLAG (convert flags) subroutine example starting on page 3-14
translates the IFREAD flags to COBOL character strings and refers to them
with Level 88 statements.

Use IFATTN to activate ON attention

As with terminal applications, you can use the ON attention User Language
function. The IFATTN call activates ON attention. This attention interrupt is
useful to escape out of any processing loop that two programs may engage in.

Using stored procedure calls

When using stored procedure calls, if your HLI application has many distinct
functions, construct a separate User Language procedure to handle each
function.

For example, if your HLI program adds, deletes, and modifies records based
on a transaction file, invoke a separate User Language procedure for each
function.
3-18 Model 204

Using an application subsystem

When using stored procedure calls, if your HIL program invokes many User
Language procedures, install the procedures as Application Subsystem
(APSY) to minimize overload.

Refer to the Model 204 User Language Manual for more information about the
APSY facility.
Host Language Interface Programming Guide 3-19

3-20 Model 204

4
Using Completion Return Codes

In this chapter

• Overview

• Using completion return codes for HLI calls

• Using the audit trail
Host Language Interface Programming Guide 4-1

Overview

This chapter briefly describes the Model 204 completion return codes for
application programmers who are using the Host Language Interface facility.

For more information

Refer to Chapter 13 for a description of the CCAJRNL and CCAAUDIT
datasets. Refer to Chapter 16 for information about using the Model 204 audit
trail and journal.

Refer to Chapter 10 for coding examples that test the completion return code
after HLI call.

Refer to the Model 204 Host Language Interface Reference Manual for a
description of HLI calls and a complete listing and description of the Model 204
completion return codes.

Refer to Chapter 10 for coding examples of how to handle enqueue errors
using completion return codes. Refer to Chapter 3 for coding examples that
show how to check completion return codes for an IFDIAL application.
4-2 Model 204

Using completion return codes for HLI calls

The first parameter of most HLI calls is a binary integer completion code that
Model 204 returns to the application program. The completion code indicates
whether or not the call finished successfully.

In general, completion codes of less than four indicate normal operation of a
call. Completion codes equal to or greater than four usually indicate that the call
was not successful and that Model 204 logged a message in the journal.

Note, however, that some return codes greater than 4 indicate normal
completion. For example, for IFOPEN, a return code of 16 indicates that a file
has been recovered but than processing can proceed without further
conditional testing.

Refer to the Model 204 Host Language Interface Reference Manual for a
complete listing and description of completion return codes.

Checking the completion return code

Check the completion code after every HLI call. Unless severe errors are
detected, Model 204 does not abend an HLI application program that attempts
unsuccessfully to execute a call.

If the completion code indicates an unsuccessful operation, the HLI application
program can perform one of the following actions:

• Reissue the call

• Stop processing

• Bypass the call and continue processing

However, use the last option with care. For example, the IFSTRT call, which
establishes the connection to Model 204, must complete successfully for HLI
processing to continue.

The HLI program must check the return code from IFSTRT, and, if the call did
not complete successfully (that is, the return code is not 0), the HLI program
must either reissue IFSTRT until it is successful or stop processing. If the HLI
program attempts to issue another HLI call after an unsuccessful call to
IFSTRT, Model 204 abends the job.
Host Language Interface Programming Guide 4-3

Using the audit trail

CCA recommends that you run your HLI program with an audit trail, because
this, together with the completion return codes for individual HLI calls, is an
important debugging aid.

To get HLI audit information, make sure to set the following parameters in your
HLI job:

• SYSOPT parameter setting to include RK lines

• LAUDIT parameter with proper setting for logical input lines

Refer to the Model 204 Command Reference Manual for a description of
SYSOPT and LAUDIT parameters.

Note: On an IFSTRT thread, the last message generated by the system is
available to the application program with the IFGERR call. This message is
available whether or not a journal is used in the HLI job.
4-4 Model 204

Part II
Model 204 Database
Processing

This part describes Model 204 database structures and processing. It gives
the HLI user necessary background information about processing against
the Model 204 database.

5
Model 204 Parameters

In this chapter

• Overview

• Model 204 Parameters

• System parameters

• User environment control parameters

• File parameters
Host Language Interface Programming Guide 5-1

Overview

This chapter provides summary information about Model 204 parameters for
application programmers who are using the Host Language Interface facility.

For more information

Refer to the Model 204 Command Reference Manual for more information
about the use and specifications of all Model 204 parameters.

Refer to the Model 204 Host Language Interface Reference Manual for more
information about IFAM1, IFAM2, and IFAM4 jobs.
5-2 Model 204

Model 204 Parameters

Parameters are variables that control or describe the Model 204 system.

The HLI application program passes to Model 204 the information pertinent to
each HLI call, such as what file to open or what records to count, in a parameter
list with the call. Model 204 passes information back to the application program,
such as the count, as output parameters.

Refer to the Model 204 Host Language Interface Reference Manual for a
description of HLI calls and their particular parameter lists.

All parameters have default values. You can set parameters to different values
to tailor system performance to a particular installation’s or user’s
requirements.

On an IFSTRT thread, you can retrieve the current value of any parameter
using the IFEPRM call. You can modify the value of certain parameters using
the IFRPRM and IFUTBL calls.

On an IFDIAL thread, you can use these Model 204 commands: VIEW, RESET,
and UTABLE.

The basic types of Model 204 parameters are listed in Table 5-1.

The following sections describe these types of parameters.

Table 5-1. Types of Model 204 parameters

Parameter type Function

System Controls the operation of Model 204 as a whole.

User environment
control

Controls the operation of a particular user’s terminal or the
characteristics of the system responses toward that user.

File Affects the organization or structures of Model 204 files.
Host Language Interface Programming Guide 5-3

System parameters

System parameters control the operation of the Model 204 system as a whole.

System parameter values affect such characteristics as the frequency of
checkpoints, the maximum number of files and groups that can be opened
concurrently, the size of the buffer pool, the size and number of user work
areas, and the maximum length of HLI call parameters.

For example, the following parameters control the maximum length of HLI call
parameters and are critical for proper HLI processing:

Other system parameters, such as LAUDIT, SYSOPT, and IFAMBS, are also
important for HLI processing.

Refer to the Model 204 Command Reference Manual for a description of the
LIBUFF, LOBUFF, LAUDIT, SYSOPT, and IFAMBS system parameters.

Setting system parameters for an HLI job

System parameters that can be set for an HLI job are set on the EXEC
statement of the Model 204 region or on a parameter line read at system
initialization.

In an IFAM1 job, you can specify system parameters in the IFSTRT call or in
the IFSETUP call for an IFDIAL thread. In an IFAM4 job, you can specify
system parameters in the EXEC statement in the job setup.

Note: After the Model 204 region has been initialized, most system parameters
cannot be reset.

Refer to the Model 204 System Manager’s Guide and the Model 204
Command Reference Manual for information about the system parameters,
and in particular, those that affect using the Host Language Interface.

Parameter Meaning Function Default

LIBUFF Input buffer
length

Specifies the maximum length allowed
for string values passed to Model 204
in HLI call parameters.

255 bytes

LOBUFF Logical line
output buffer
length

Specifies the length of the logical line
output buffer for output parameters
returned by Model 204 to the HLI
program.

256 bytes
5-4 Model 204

User environment control parameters

User environment control parameters (that is, User 0 parameters) affect the
operation of a particular user’s terminal or the characteristics of system
responses toward that user. For example, the access method and device type
are required parameter specifications for a user. Each user must be defined to
Model 204.

In an IFAM1 job, specify the user parameters in the IFSTRT call. In an IFAM4
job, specify the user parameters in the CCAIN input file in the job setup. Refer
to the Model 204 Host Language Interface Reference Manual for a description
of IFAM1 and IFAM4 jobs.

Refer to the Model 204 System Manager’s Guide for information about user
environment control parameters.

Buffer size and IODEV parameters for an IFDIAL thread

The maximum length of a data area that can be transferred over an IFDIAL
thread is 32763 bytes. The maximum length affects application developers who
use the IFDIAL thread as well as Model 204 system administrators who must
set up the size parameters.

The system administrator of a Model 204 installation can tune the size
parameters so that the best performance versus memory ratio can be
achieved. Model 204 determines the size of buffers in the User 0
MAX(OUTMRL,INMRL) parameter.

Refer to the Model 204 Host Language Interface Reference Manual for detailed
information about transferring data on an IFDIAL thread and related size
considerations.

Refer to the Model 204 System Manager’s Guide for information about
performance considerations in implementing the communication buffer for an
IFDIAL thread by setting User 0 parameters for IODEV=29 (in z/OS and VSE)
or IODEV=39 (in VM).

User table parameters

User table parameters affect the size of the tables in a user’s work area.

Model 204 holds an area of memory known as server area, which contains the
information needed to describe the operation of an individual user. The server
is divided into tables, each of which contains a specific type of data.

The user table parameters determine the size of these tables. The size of user
tables can be reset with the IFUTBL call.

Refer to Chapter 12 for more information about user work areas and table
parameters.
Host Language Interface Programming Guide 5-5

File parameters

File parameters affect the organization, structure, and allocation of Model 204
files.

Some file parameters are set when a file is created. The Model 204 file
manager determines these parameters, which usually cannot be changed after
the file is created.

In addition to file parameters set during creation, Model 204 maintains a set of
parameters that reflect the changing condition of each file. These parameters
contain such information as the number of records added and deleted since the
file was created, the space used and free space available in the data and index
areas, and the number of records in the sorted file overflow areas.

With Model 204 file manager privileges, you can use IFRPRM on an IFSTRT
thread to set the following file parameters:

• FISTAT

• FOPT

• FRCVOPT

• PRIVDEF

• OPENCTL

• BRESERVE

• DRESERVE

For more information about file parameters, refer to the Model 204 File
Manager’s Guide.

CURFILE parameter and the current file

You can also use the IFEPRM call on an IFSTRT thread to get the name of the
file last accessed, which is held by the CURFILE parameter.

See Chapter 6 for more information about the CURFILE parameter.
5-6 Model 204

6
Model 204 Files and Records

In this chapter

• Overview

• Data files

• Records
Host Language Interface Programming Guide 6-1

Overview

This chapter describes basic Model 204 database structures, that is, files and
records, for application programmers who are using the Host Language
Interface facility.

For more information

See Chapter 7 for information about Model 204 fields and variables. Refer to
Chapter 2 for information about HLI processing using Model 204 files and
records.

Refer to the Model 204 File Manager’s Guide and Model 204 User Language
Manual for more information about Model 204 database constructs.
6-2 Model 204

Data files

A Model 204 file is a collection of as many as 16.7 million records. The
maximum number of files that can be accessed in one Model 204 job is 32,767.

Model 204 files have an inverted file structure, which means that they contain,
in addition to the data records themselves, an index that points to records
containing particular values of fields designated as retrieval or KEY fields. The
index and data areas are physically separate parts of the file.

The data representation of an inverted file format is similar to the organization
of a reference book such as Bartlett’s Familiar Quotations. The main body of
the book, that is, the data area, consists of groups of quotations. To help you
find the quotations, the book provides an index that contains subject entries for
as many subjects as are pertinent to the quotation, interspersed with title and
author entries for a poem, speech, or other work.

The following Model 204 file types determine how data is stored:

• Entry order

• Unordered

• Sorted

• Hashed key

You can use the four file types in any combination to make up a database. Each
type of organization provides the inverted file capability, and any Model 204 file
can be cross-referenced to any other Model 204 file.

The following sections describe the different types of data files.

Entry order file

In an entry order file, Model 204 stores each new record in the next available
space. During processing, Model 204 retrieves and processes the records in
file storage order. Usually, the order is chronological.

Note: Entry order files are the most widely used Model 204 files. Entry order
files provide all inverted file capabilities except sort and hashed key. To
generate sorted output when processing entry order files, use the IFSORT call.

Unordered file

In an unordered file, Model 204 stores new records in any location where
enough space is available to hold the records. Model 204 maintains for an
unordered file a queue of pages with available space. When records are
deleted, storage space becomes available. Model 204 uses pages from the
queue to store new records.
Host Language Interface Programming Guide 6-3

When using unordered files, note that these files utilize disk space more
efficiently if you delete records frequently in your HLI application.

Sorted file

When you specify the sorted file option and designate one field in a file as the
sort key, the file is a sorted file. Model 204 uses an indexed sequential scheme
for a sorted file, storing and processing records according to the values of the
sort key.

Specify the sorted file option and designate the sort key field at file initialization.
You can designate the sort key field as either mandatory or optional. When a
sort key field is mandatory, Model 204 requires all records to contain this field.
When the sort key field is optional, Model 204 accepts records in the file that
do not contain the field.

You can retrieve records in a sorted file with a combination of special sort key
retrieval conditions and the standard key field value conditions. Sorted files are
useful for applications that produce many reports in the same sort sequence.

Hashed key file

When you specify the hashed key option and designate a particular field name
as the hash key, the file is a hashed key file. Specify the hashed key file option
and designate the hash key field at file initialization. Model 204 stores records
in locations based on the value of the designated hash key. You can designate
the hash key field as either mandatory or optional.

For example, you might designate SOCIAL SECURITY NUMBER as the hash
key. You can then retrieve records on the basis of this key without performing
an index search.

Note: Use a hashed key file if all data records contain a unique or fairly unique
key and if your HLI application performs most retrievals on the basis of that key
alone.

File groups

A file group is a named collection of Model 204 files that Model 204 treats
logically as a single file.

For example, you might define the file group BANK containing the files
CHECKING, SAVINGS, and CARLOAN. Each file is accessible directly and is
called by its own name (CHECKING, SAVINGS, and CARLOAN). All data in the
three files is also available under the name BANK. Model 204 does not
duplicate the data. Instead, a special table relates the group BANK to its
member files.

You can define any number of file groups. File groups can have overlapping
membership.
6-4 Model 204

For example, nine individual state files can be processed as members of a file
group, SOUTH, which represents a particular regional area. The same files can
also be processed as members of a file group, USA, which represents the
entire United States.

File groups are particularly useful for processing under the following conditions:

• Regrouping and archiving files in data aging applications

• Providing alias names for test and production files

• Processing similar data that must be maintained in independent files

File model options

The following file models allow you to enforce filewide constraints on files and
fields by setting the FILEMODL parameter when creating a file:

• The NUMERIC VALIDATION file model, which causes Model 204 to
perform numeric data type validation on fields defined as FLOAT or
BINARY.

• The First-Normal Form (1NF) file model, which ensures that the data within
a file conforms to the rules for 1NF.

Refer to the Model 204 File Manager’s Guide for information about file model
options.
Host Language Interface Programming Guide 6-5

Records

A record is a combination of related data fields that are defined in a Model 204
file. Records are variable in length and format. Model 204 does not restrict
records to any predefined or fixed structure.

A Model 204 record can contain a virtually limitless number of fields. Also, the
structure of a Model 204 record does not limit the number of occurrences of a
field in a record. Fields that appear more than once in a record are known as
multiply occurring fields.

To save space under some conditions, a Model 204 file manager can
preallocate space for occurrences of certain fields in a record. If fields are
preallocated, only the specified number of occurrences can be added to a
record. If fields are not preallocated, no space is reserved until data is added to
the record. Within a record, fields can appear in any sequence. Within a file, the
sequence and number of fields might vary from record to record.

Application programs retrieve data from Model 204 files strictly on the basis of
individual field names and values. Therefore, applications are independent of
the physical structure of the files and are not affected by changes or additions
to the database.

Internal database record number

Model 204 uniquely identifies every record in the database by its file name and
its internal record number. Each record in a file remains associated with a
unique record number until the file is reloaded or until the record is deleted and
its number reused by a new record.

Current record and the current file

During HLI job processing, Model 204 maintains information that identifies the
current record, using the CURREC parameter, and the current file, using the
CURFILE parameter.

No current record

On a single cursor IFSTRT thread, certain HLI calls set CURREC to -1, which
is an invalid internal database record number, to indicate that there is no current
record on the thread. Upon completion, the following HLI calls set CURREC
to -1:

• IFDREC

• IFDSET

• IFINIT

• IFOPEN
6-6 Model 204

Current record on a multiple cursor IFSTRT thread

On a multiple cursor IFSTRT thread, Model 204 assigns a value to CURREC,
which is the internal database record number of the current record in the open
cursor that was referenced in the call just processed.

Note that a cursor has no current record associated with it until one of the
following HLI calls executes successfully and positions the cursor:

• IFFTCH

• IFFRN

• IFSTOR

Once the open cursor is positioned at the current record, the HLI application
can perform individual record processing functions. Any of the individual record
HLI calls allowed on a multiple cursor IFSTRT thread can process the current
record by referencing the name of the open cursor in the call.

Current record on a single cursor IFSTRT thread

On a single cursor IFSTRT thread, the CURREC value is the internal database
number of the current record relative to the last set created for the last file
opened on the current thread.

The current record is the one last referenced by IFGET, IFPOINT, or IFBREC.

Specifying a record number

Use the following calls to specify a particular record number:

• IFFRN, specifying the cursor name, on a multiple cursor IFSTRT thread.

Note: IFFRN opens a cursor to the current record.

• IFPOINT on a single cursor IFSTRT thread.

The record specified in the HLI call becomes the current record for processing.
Host Language Interface Programming Guide 6-7

6-8 Model 204

d

7
Model 204 Fields and Variables

In this chapter

• Overview

• Field names and values

• Field definitions and attributes

• Field definitions for group files

• Field access violations

• Using %variables

• Using field name variables
Host Language Interface Programming Guide 7-1

Overview

This chapter describes two basic Model 204 database constructs, fields and
variables, for application programmers who are using the Host Language
Interface facility.

For more information

Refer to Chapter 6 for information about Model 204 files and records. Refer to
Chapter 7 for information about using fields and variables in HLI calls.

Refer to Model 204 Host Language Interface Reference Manual for a
description of HLI calls.

Refer to the Model 204 File Manager’s Guide and Model 204 User Language
Manual for complete information about Model 204 fields and variables.
7-2 Model 204

Field names and values

The smallest addressable element of the Model 204 system is the field. To
identify and retrieve data, assign meaningful names, such as AGE, ADDRESS,
OCCUPATION, and SEX, to fields. Each Model 204 file can have as many as
4000 different field names defined.

Model 204 stores each field as a name=value pair, for example, SEX=FEMALE
and SEX=MALE. Field name=value pairs are variable in length to provide for
file compression and text processing capabilities.

The structure of a Model 204 record does not limit the number of occurrences
of a field in a record. Fields that appear more than once in a record (for
example, CHILD or HOBBY fields) are known as multiply occurring fields.
When referring to a field that is multiply occurring, specify whether, for example,
the first, fifth, or all occurrences of the field are being addressed.

Rules for naming fields

The following rules apply for naming Model 204 fields:

• A field name must begin with a letter, and can be up to 255 characters in
length.

• Except for the following characters, you can use any word or character
(including a space) as part of a field name:

""�"��"	�#�������

Note: The at sign (@) and number sign (#) characters are the default terminal
correction characters. If you specify some other characters in the ERASE and
FLUSH parameters, the restriction on using @ and # in a field name applies
instead to the symbols that you specify.

Refer to the Model 204 Command Reference Manual for information about the
ERASE and FLUSH parameters.

• When more than one consecutive space appears in a field name,
Model 204 ignores the extra spaces.

• Any reserved word or operator can be:

– Part of an unquoted string, as long as it is not surrounded by spaces.
For example, ZCOUNT is valid; Z COUNT is invalid.

– Part of a quoted string, as long as it does not stand alone. For example,
A ’OR’ B is valid; ’OR’ is invalid.

For more information about quotation marks, see “Using quotation marks” on
page 7-5.
Host Language Interface Programming Guide 7-3

The following terms have special meaning in the Model 204 system, and
are reserved. To avoid errors, do not use reserved terms when forming field
names and values.

• Any of the following reserved characters, if embedded in a field name, must
be part of a string enclosed in quotation marks. Avoid the following
characters when forming field names and values:

Examples of valid field names

The following examples are valid Model 204 field names:

$����

118/��,17(5(67�

$·� �%·�

Examples of invalid field names

The following examples are invalid Model 204 field names:

�,17(5(67�

<($5�72�'$7(�

86(�&2817�

1$0(""

·9$/8(·�

AFTER ALL AND AT

BEFORE BY COUNT EACH

EDIT END FROM IN

IS LIKE NOR NOT

OCC OCCURRENCE OR RECORD

RECORDS TAB THEN TO

VALUE VALUES WHERE WITH

EQ GE GT LE LT NE

$ * / # @ =

< > ; : , ÿ

+ (plus sign) - (minus sign) ... (period in series)

()
7-4 Model 204

Forming field values

The following rules apply for forming Model 204 field values:

• A field value can be up to 255 characters in length.

• Except for the following characters, you can use any word or character
(including a space) as part of a field value:

?? ?$?& @ # ; :�

Note: The restriction on using at sign (@) and number sign (#) characters
is the same as for field names. See “Rules for naming fields” on page 7-3.

• When more than one consecutive space appears in a field value,
Model 204 ignores the extra spaces.

• When using a reserved word or character in a value used with the EDIT
form of IFUPDT or IFPUT or a %variable assignment, do not enclose the
value with quotation marks.

• Enclose values that contain reserved words with quotation marks in all
other instances (such as with IFFIND).

Examples of valid field values

The following examples are valid values for Model 204 fields:

3$5(176 ·0$5<�$1'�-2+1�60,7+·

&,7< %26721�

In these examples, PARENT and CITY are fields; their values appear to the
right of the equal sign (=).

Using quotation marks

The following rules apply for using quotation marks:

• When quotation marks are used, an even number is required.

• A pair of single quotation marks denotes a quoted string, for example,
’TEXT’.

• Model 204 stores and uses quoted strings with quotation marks dropped.

• Model 204 replaces a pair of consecutive single quotation marks inside a
quoted string with a single quotation mark upon storing or printing the
string.
Host Language Interface Programming Guide 7-5

For example, the quoted strings shown below on the left result in the output
on the right:

• Model 204 converts a ’’ (a pair of consecutive single quotation marks that
is not included in a quoted string) to a character string of zero length, called
a null string.

Refer to the Model 204 User Language Manual for more information about
quotation marks.

Quoted string: Output:

35,17�·)$7+(5··6�1$0(·�)$7+(5·6�1$0(

35,17�··$1'·· ·$1'·
7-6 Model 204

Field definitions and attributes

Defining fields

You can use IFDFLD to define a new field, and IFRFLD, which requires
Model 204 file manager privileges, to redefine a field. When using IFDFLD or
IFRFLD, a knowledge of field attributes is necessary.

Note: Field definition is usually the responsibility of the Model 204 file
manager. CCA recommends that a site restrict tasks to selected personnel to
prevent the proliferation of unnecessary fields and guarantee consistency of
field names and field types among files of a group.

When to assign field attributes

You assign field attributes when you:

• Initially load a file

• Add a new field name to an established file (IFDFLD)

• Redefine a field description (IFRFLD)

Note: If you define a field but do not specify field attributes, Model 204
assigns default attributes. Refer to the Model 204 Host Language Interface
Reference Manual for a description of the IFDFLD call.

Once a field attribute has been assigned, it applies whenever the field name
appears in the file.

Field attributes

You can assign each field in a Model 204 file certain field attributes, including
storage and security options, based on the characteristics of the data.

You can combine field attributes and options. The combination of attributes for
a field governs the operational characteristics of a field and the amount of
space required to store the field value internally. The operational characteristics
and storage characteristics of a field usually are independent considerations.

The following sections describe briefly Model 204 field attributes. For complete
information about field attributes, refer to the Model 204 File Manager’s Guide.

Operational characteristics of a field

Use the following field attributes to control the operational characteristics, that
is, how the field is used:
Host Language Interface Programming Guide 7-7

Field attribute Meaning

KEY KEY fields provide quick access to data. Pointers to
records that contain specific values of KEY fields are
maintained in the index area. You can specify fields
designated as KEY in record selection specifications to
retrieve records based on index entry. Use IFFIND to
select KEY fields.

See page 7-12 for information about KEY inconsistencies.

NON-KEY NONKEY fields do not contain pointers in the index area.
You can use NONKEY fields to retrieve records with
IFFIND, but selection is performed by sequential search
and is less efficient than with KEY fields.

See page 7-12 for information about NONKEY
inconsistencies.

NUMERIC RANGE
or RANGE

 NUMERIC RANGE or RANGE fields contain certain
numeric values. The index area contains multiple pointers
to fields within a range of values. You can specify numeric
range retrievals for these fields.

NUMERIC RANGE fields cannot be defined to a file with
the First-Normal Form (1NF) file model option set. See
page 7-12 for information about NUMERIC RANGE
inconsistencies.

NONRANGE Model 204 does not store multiple pointers for
NONRANGE fields. You can specify numeric range
retrievals for these fields, but the selection is less efficient
than for NUMERIC RANGE fields.

See page 7-12 for information about NONRANGE
inconsistencies.

ORDERED Fields designated as ORDERED make up the Ordered
Index. Model 204 maintains the values of Ordered Index
fields in a particular collating sequence for alphabetic,
alphanumeric, and numeric range retrievals to make range
retrievals more efficient.

An ORDERED field can have an order type of either
CHARACTER or NUMERIC. You can access file record
keys in order.

NONORDERED NONORDERED is the default if you do not specify the
ORDERED attribute when you define a field.

VISIBLE VISIBLE fields appear in the data area and can be printed,
noted, sorted, or used in arithmetic expressions. VISIBLE
is the default field designation. See page 7-12 for
information about VISIBLE inconsistencies.
7-8 Model 204

INVISIBLE You can use fields designated as INVISIBLE to retrieve
records. However, because INVISIBLE fields do not appear
in the data area (only in the index areas), you cannot print,
note, or sort INVISIBLE fields, or use them in an arithmetic
expression.

IINVISIBLE fields cannot be defined to a file having the
First-Normal Form (1NF) file model option set, except in
conjunction with the REPEATABLE field attribute. See
page 7-12 for information about INVISIBLE
inconsistencies.

FRV (For Each
Value)

 FRV fields have a list of all unique values assigned to the
field. Special statements are available in User Language to
manipulate the values of FRV fields; IFFDV, IFGETV, and
IFFTCH are the corresponding HLI calls.

NON-FRV NON-FRV fields do not have a list of all unique values for
the field.

DEFERRABLE When you open a file in deferred update mode, Model 204
defers changes to DEFERRABLE field index entries until a
later time.

NONDEFERRABLE Model 204 changes index entries for NONDEFERRABLE
fields as the fields are updated, even when you open the
file in deferred update mode.

UNIQUE UNIQUE fields have a uniqueness constraint enforced by
the Unique Key. A given field name=value pair occurs in
one record in a file. See page 7-15 for information about
UNIQUE violations.

NONUNIQUE NONUNIQUE fields do not have a uniqueness constraint
on them.

AT-MOST-ONE AT-MOST-ONE fields enforce a single occurrence
constraint. The field may appear only once in a given
record. Note that AT-MOST-ONE is the default for fields
defined in a file having the First-Normal Form (1NF) file
model option set. See page 7-16 for information about AT-
MOST-ONE violations.

REPEATABLE REPEATABLE fields do not have a single occurrence per
record constraint associated with them. See page 7-16 for
information about REPEATABLE violations.

Field attribute Meaning
Host Language Interface Programming Guide 7-9

Storage characteristics of a field

Use the following field attributes to control the storage characteristics, that is,
how Model 204 stores field values in a file:

Field Attribute Meaning

STRING Model 204 stores STRING fields as character strings rather
than in compressed numerical form.

BINARY Model 204 compresses BINARY fields for efficient use of
storage space. Note that Model 204 cancels a request to
store invalid binary data in a file that has the NUMERIC
VALIDATION file model option set. Seepage 7-13 for
information about BINARY violations.

CODED Model 204 stores fields designated as CODED as codes in
the data area to reduce storage space requirements, and
as character strings in the file dictionary. Model 204
decodes CODED fields internally when retrieving or
processing them.

You can further designate CODED fields as FEW-VALUED
or MANY-VALUED to optimize the coding procedure.

NONCODED Model 204 stores NONCODED fields as character strings
in the data area. See“Compression violations” on
page 7-15 for information about NONCODED violations.

FLOAT Model 204 stores FLOAT fields in floating-point form using
IBM hardware floating-point representation. You must
supply a LENGTH value with FLOAT to indicate the
precision of the floating-point field being defined.

Model 204 cancels a request to store invalid floating point
data in a file that has the NUMERIC VALIDATION file model
option set. See page 7-16 for information about FLOAT
violations. Refer to the Model 204 Host Language Interface
Reference Manual for a description of floating-point format
for IFFTCH, IFUPDT, IFGET, and IFPUT.

FEW-VALUED Use the FEW-VALUED attribute for a field that has the
CODED or FRV attribute and is expected to take on fewer
than about 50 different values. Model 204 stores these
values in a special section of the file dictionary (Table A).

MANY-VALUED Use the MANY-VALUED attribute for a CODED or FRV field
that is expected to take on at least 50 different values.
Model 204 stores these values in a separate special
section of the file dictionary (Table A).
7-10 Model 204

Storage options for preallocated fields

Use the following storage options with preallocated fields:

Field updating options

Use the following options to control the type of field updating performed:

Field security option

Use the LEVEL option to assign a security level for a field.

Storage option Meaning

OCCURS Indicates the number of times that a field can occur in a
record. See page 7-15 for information about OCCURS
violations.

LENGTH Indicates the maximum length of a field. See page 7-16 for
information about LENGTH violations.

PAD Indicates the padding character for short fields.

Field updating
option Meaning

UPDATE IN PLACE Causes the field to be changed. Its order in the record is
preserved.

UPDATE AT END Causes the field to be deleted and the new field added at
the end of the record when the field is changed.
Host Language Interface Programming Guide 7-11

Field definitions for group files

The following considerations apply when using fields defined in group file
context:

• A given field is not required to have the same properties in all the files of a
group. For example, a field can have the NUMERIC RANGE attribute in
some files but not in others.

• A field that appears in one or more files of a group need not exist in others.

• If none of the files in a group contain a field name used in a selection
specification, Model 204 rejects the specification during compilation.

When inconsistencies in field definition occur among files used in the group
context, Model 204 performs certain actions, as described in the following
section.

KEY and NONKEY inconsistencies

When you use a field name in selection specifications defined as KEY in some
files and NONKEY in others, Model 204 carries out the following actions:

1. Performs a KEY search in files for which the field is defined as KEY.

2. Performs a direct search in files in which the field is defined as NONKEY.

NUMERIC RANGE and NONRANGE inconsistencies

When you use retrieval specifications based on fields that have NUMERIC
RANGE or NONRANGE attributes, Model 204 handles them in the same way
as for KEY and NONKEY specifications when they occur in a group context.

VISIBLE and INVISIBLE inconsistencies

You can retrieve only VISIBLE fields with IFFTCH, IFGET or IFMORE. If a field
is INVISIBLE in one or more files in a group, Model 204 returns a null string for
the field, as if it did not exist in the record.
7-12 Model 204

Field access violations

The following types of violations can occur when you attempt to access a field:

• Field-level security

• LENGTH

• OCCURS

• Compression

• UNIQUE

• AT-MOST-ONE

The following sections describe each of these violations related to HLI
processing. See “Field name variable errors” on page 7-24 for information
about violations with %%variables.

Field-level security violations

Field-level security controls access to the individual fields of a Model 204 file.
You can assign a security level to a field by using IFDFLD or IFRFLD.

You can specify any of the following types of field access:

• SELECT, which allows the field to be used in an IFFIND or IFFILE call.

• READ, which allows the value of a field to be examined by IFFTCH, IFGET,
or IFMORE.

• UPDATE, which allows the value of a previously stored occurrence of a
field to be changed by IFUPDT, IFPUT, IFDVAL, or IFFILE.

• ADD, which allows new occurrences of a field to be added by IFUPDT,
IFPUT, or IFFILE.

Model 204 handles field-level violations

When you attempt to access a field having field-level security, access succeeds
only if your user access level is equal to or greater than the level defined for the
field. Otherwise, a field-level security violation occurs.

Model 204 returns a completion code of 4 for a field-level security violation and
an error message. Note that you can retrieve the error message using IFGERR.

In general, Model 204 handles field-level security violations differently
depending on the type of access violation and whether it occurs in file or group
context.

Model 204 takes different actions for an access violation depending on the type
of access attempted when the violation occurred:
Host Language Interface Programming Guide 7-13

• For SELECT or READ access, Model 204 performs the operation as if the
field did not exist.

• For UPDATE or ADD access, Model 204 cancels the HLI call and returns a
completion code of 4 to the HLI program.

Although a user’s access rights are fixed for a group, the field’s access level
can vary from file to file. This might make access to a field legal in some files
and illegal in others. Model 204 rejects a HLI call that contains a field name
reference under the following conditions:

• In file context, if the access is not allowed in the file.

• In group context, if the access is not allowed in any file in the group.

Note: Use IFFLS in your HLI program to check for field-level security
violations before they occur.

Field-level violations for IFFTCH, IFUPDT, IFGET, and IFPUT

Model 204 treats HLI calls that compile IFGET (or IFMORE) and IFPUT
specifications in a special way, because a specification compiled by IFGET (or
IFMORE) can be executed by IFPUT, and vice versa. The same is true for
IFFTCH and IFUPDT specifications on a multiple cursor IFSTRT thread.

If an HLI thread has READ, UPDATE, or ADD access to a field, you can
reference the field using IFFTCH or IFUPDT on a multiple cursor IFSTRT
thread, or IFGET or IFPUT on a single cursor IFSTRT thread.

For field-level violations involving IFFTCH, IFUPDT, IFGET, or IFPUT,
Model 204 performs the following actions:

• If a violation occurs during IFFTCH, IFGET, or IFMORE processing,
Model 204 returns a null value for the affected field or fields and continues
processing the call.

• For the retrieve-all-fields form of the data specification with IFFTCH or
IFGET, Model 204 returns only fields for which the user has READ access.

• If a violation occurs during IFUPDT or IFPUT processing, Model 204 stops
processing the call and returns a completion code of 4 to the HLI program.

Refer to the Model 204 Host Language Interface Reference Manual for a
description of IFFTCH, IFUPDT, IFGET, IFMORE, and IFPUT calls.

LENGTH violations

A field can be defined as preallocated and having a maximum LENGTH m.
Space for this length is preallocated in each record in a file, and this space
cannot be expanded.

Note: If a field is defined as having a LENGTH of m, that you can assign that
field only values that are between 1 and m bytes long.
7-14 Model 204

Model 204 rejects any attempt to store values greater than the specified
maximum length with IFUPDT, IFSTOR, IFPUT, or IFBREC, by canceling the
call and returning a completion code of 4 to the HLI program.

Model 204 treats any attempt to locate or delete unacceptable values as
references to nonexistent values with the following actions:

• For IFFIND, the selection criteria fail to locate any records.

• IFDVAL does not delete any fields.

OCCURS violations

If a field is defined as occurring a particular number of times, that is, OCCURS
n, it can be stored at most n times in any record.

Model 204 cancels the call and returns an error completion code to the HLI
program for either of the following conditions:

• If the HLI program issues either IFUPDT or IFPUT and attempts to add a
new occurrence of an OCCURS n field to a record that already contains the
maximum number.

• During processing, if Model 204 encounters a nonnumeric value in an
OCCURS FLOAT field.

Compression violations

If a field is defined as having the attributes OCCURS n, BINARY, and
NONCODED, only compressible values can be stored in it.

A small amount of space is preallocated for such a field. A compressible value
is a decimal integer of as many as nine digits, but without a plus sign, leading
zeroes, embedded blanks following a minus sign, or a decimal point.

Note: If you use IFUPDT or IFPUT and attempt to store an incompressible
value in an OCCURS n, BINARY, NONCODED field, Model 204 cancels the
call and returns a completion code of 4 to the HLI program.

UNIQUE violations

If a field is defined as UNIQUE, only one record in the file can contain any given
value of that field.

Note: If you use IFUPDT, IFSTOR, IFPUT, or IFBREC and attempt to store the
same value of a UNIQUE field in another record, Model 204 cancels the call
and returns a completion code of 200 to the HLI program.

If a completion code of 200 is returned, use the IFEFCC call to determine which
records are creating the uniqueness violation. See the Model 204 Host
Language Interface Reference Manual for more information about IFEFCC.
Host Language Interface Programming Guide 7-15

NUMERIC VALIDATION violations

During processing, if Model 204 encounters invalid data for BINARY and
FLOAT numeric field types, Model 204 cancels the call and returns an error
code to the HLI program.

AT-MOST-ONE violations

If a field is defined as AT-MOST-ONE, only one occurrence of that field can be
stored in a particular record.

Note: If the HLI program issues a call to IFSTOR, IFUPDT, or IFPUT, and
attempts to store more than one (that is, a second) occurrence of the field within
a particular record, Model 204 cancels the call and returns a completion code
of 202 to the HLI program.

If a completion code of 202 is returned, use the IFEFCC call to determine which
records are creating the AT-MOST-ONE violation. See the Model 204 Host
Language Interface Reference Manual for information about IFEFCC.
7-16 Model 204

Using %variables

A %variable is an entity whose name can substitute another value or
expression in a User Language statement or HLI program. %Variables can be
used any place in User Language that a value can be used.

You can change the value of a variable at any time by assigning it a new value.
You assign one or more %variables in an HLI call by specifying the %variable
parameters (%variable buffer and %variable specification) in the parameter list.
See the following pages for more information about these %variable
parameters.

The %variable option is available for use with the following IFSTRT calls:

Note: Except for IFBREC and IFCLST, the IFSTRT thread calls listed above
are used with the Compiled IFAM facility. Refer to Chapter 2 for information
about the Compiled IFAM facility.

Compile and execute: Execute-only:

IFBREC --

IFCLST --

IFCTO IFCTOE

IFFAC IFFACE

IFFDV IFFDVE

IFFIND IFFINDE

IFFNDX IFFNDXE

IFFTCH IFFTCHE

IFFWOL IFFWOLE

IFGET IFGETE

IFGETX IFGETXE

IFMORE IFMOREE

IFMOREX IFMORXE

IFOCC IFOCCE

IFOCUR IFOCURE

IFPUT IFPUTE

IFSKEY IFSKYE

IFSORT IFSRTE

IFSTOR IFSTRE

IFUPDT IFUPDTE
Host Language Interface Programming Guide 7-17

Specifying a %variable name

The following rules apply for specifying a %variable name:

• The first character of the %variable name must be a percent sign (%).

• Any combination of letters and numbers is valid.

• No embedded blank or colon (:) characters are allowed in the name.

• You can repeatedly reassign a %variable name. However, each
assignment affects all specifications in which the %variable is referenced.

Example of when to use a %variable

Use %variables when your HLI application program performs similar and
successive data retrievals.

For example, an IFFIND call frequently appears inside an IFGET loop. The
IFFIND uses the value retrieved by the IFGET as part of the selection criteria.

To cross-reference without using the %variable facility, you must code your
program to move the value retrieved by the IFGET into the IFFIND selection
criteria. Since the IFFIND specification is modified during execution, it cannot
be compiled and saved from one call to the next.

In contrast, using the %variable facility you can use %variables to replace field
values in IFFIND criteria that are not known at compilation time.

For example, a specification that is referred to in an IFFIND call might have the
following form:

/$67�1$0(�1$0(�$1'�5(&7<3(&+,/'�(1'�

Using this specification, during the execution of IFFIND, the appropriate last
name substitutes for %NAME. In the next execution of IFFIND, you can specify
a new last name or you can reuse the old one. See “Specifying the %variable
parameters” for information about specifying %variables in an HLI call.

Specifying the %variable parameters

You assign one or more %variables in an HLI call by specifying the %variable
input parameters, that is, %variable buffer and %variable specification, in the
parameter list.

Note that if you specify one, you must specify the other. Specify each of the
%variable parameters as a character string, whose maximum length is the
input buffer size. Refer to the Model 204 Host Language Interface Reference
Manual for a description of HLI calls and their parameter lists.

The %variable buffer parameter (%VARBUF in the parameter list descriptions)
contains the values to be assigned to the %variables that are used by the call.
7-18 Model 204

The %variable specification (%VARSPEC in the parameter list descriptions)
describes the format of the data contained in the %variable buffer and, in some
cases, the list of %variables to be assigned. The %variable specification
follows the syntax of the LIST, DATA, or EDIT specifications used with IFUPDT
or IFPUT.

See “Assignment of %variables” on page 7-20 for more information about the
%variable specification. Refer to the Model 204 Host Language Interface
Reference Manual for a description of IFUPDT and IFPUT.

Using %variables in EDIT and LIST specifications

You can use a %variable in the field name list of an EDIT or LIST specification
for the IFFTCH, IFGET, IFGETX, IFMORE, IFMOREX, IFPUT, IFSTOR, and
IFUPDT calls. See the specific calls in the Model 204 Host Language Interface
Reference Manual for more details.

Example of using a %variable

The following excerpt shows how to use a %variable in an IFFIND call to
retrieve a series of Social Security numbers from records. In this example, the
IFFIND is coded inside a program loop that retrieves records.

The sample COBOL program issues the following IFFIND call:

&$//��,)),1'��86,1*�5(7&2'(�)'63(&�)'1$0(�661�661(',7�

where:

• RETCODE is the Model 204 completion code.

• FDSPEC is the name of a data area that contains selection criteria for
IFFIND (also known as the FIND specification).

• FDNAME is the name of the compilation to be used by subsequent
executions.

• SSN specifies the %variable buffer parameter; SSN is the name of a data
area that contains the value of the Social Security number, which is
assigned to the %variable %SSN.

• SSNEDIT specifies the %variable specification parameter; SSNEDIT
describes the format of the SSN data area.

The DATA DIVISION of the sample COBOL program contains the following
definitions of the IFFIND parameters:

:25.,1*�6725$*(�6(&7,21�

����&$//�3$506�������&203�6<1&�

����5(7&2'(����������3,&785(������

�

�

�

Host Language Interface Programming Guide 7-19

����$/3+$�3$506�

��������)'63(&��������3,&785(�;�����9$/8(

����·62&6(&12 �661�(1'�·�

��������)'1$0(��������3,&785(�;����9$/8(�·),1'�·�

��������661�����������3,&785(������

��������661(',7�������3,&785(�;�����9$/8(

�������·(',7��661��$�����·�

�

�

�

352&('85(�',9,6,21�

&$//��,)),1'��86,1*�5(7&2'(��)'63(&��)'1$0(��661��661(',7�

�

�

�

Assignment of %variables

Values in the %variable buffer are assigned to %variables depending on what
type of %variable specification you use. You can specify the %variable
specification with a LIST, DATA, or EDIT format as is used with IFUPDT or
IFPUT.

Model 204 assigns %variables in the following ways:

• For a LIST specification, the format is:

/,67��YDULDEOH���YDULDEOH���������

where, each value in the %variable buffer is assigned to the corresponding
%variable in the list. The values in the %variable buffer are stored in the
following form:

·YDOXH�··YDOXH�·����

• For a DATA specification, the format is:

'7��

where, explicit %variable assignments are included in the %variable buffer
parameter in the following form:

�YDULDEOH� ··YDOXH�·���YDULDEOH� ··YDOXH�·����

• For an EDIT specification, the format is:

(',7��YDULDEOH���YDULDEOH�������IRUPDW��IRUPDW�������

where, each value in the %variable buffer is assigned to the corresponding
%variable in the list according to the corresponding format. See the
COBOL coding excerpt on the preceding page for an example of an EDIT
specification using a %variable.
7-20 Model 204

Assignment of %variables for HLI threads

Each HLI thread has its own set of %variables.

Upon the initial reference to a %variable on an HLI thread, Model 204 assigns
a null string. The %variable retains the null value until an explicit assignment
is made.

Note: If you attempt to assign a value to a previously unreferenced %variable,
Model 204 displays a NAME LIST SYNTAX ERROR message.

After a value is assigned to a %variable, the value and the format are carried
from one HLI call to the next, making repeated assignment unnecessary for
values that do not change. To avoid redundant processing, specify only those
%variables in an HLI call that take on new values.
Host Language Interface Programming Guide 7-21

Using field name variables

Field name variables are extensions of percent variables (%variables).

Field name variables enable you to refer indirectly to field names, thereby
enabling HLI calls to be generalized. Using field name variables, you specify
the actual field names used by a particular HLI call when you execute your HLI
program.

Specifying a field variable name (%%variable)

The same rules apply for specifying a field variable name as for a %variable
name except that the field variable name begins with two percent signs(%%).
For example, %%FIELD can be used to specify a field name variable.

See “Specifying a %variable name” on page 7-18 for naming rules.

Note: A %variable and a %%variable that have identical names are actually
the same variable. When the variable is used in a %variable context, for
example, as the value in a FIND specification, it takes the %name form. Or, if
the variable is used in a field name context, for example, as part of a field name
list in a GET specification, it takes the %%name form.

In the latter case, the value of the variable at the time that the GET specification
is executed is substituted in the specification and is then treated as a field
name. When a value is assigned to a field name variable, the name of the value
that should be assigned to the field name variable is actually a percent variable,
that is, a %name rather than a %%name.

When to use a field name variable

You can reference a field name variable in any of the following IFSTRT thread
calls:

• IFCTO

• IFFIND

• IFFNDX

• IFFTCH

• IFGET

• IFMORE

• IFOCC

• IFPUT

• IFUPDT
7-22 Model 204

You can specify a %%variable in a HLI call anywhere you would normally
reference a field name. You can also specify a %%variable in a DATA input
specification in an IFUPDT or IFPUT call.

Example of using %%variables

The following COBOL code excerpt contains two different record types. The
types have nearly all fields in common, but they differ in the following ways:

• Record type A has a STATUS field, while record type B has a
PERFORMANCE field.

• Record type A has a SALARY field, while record type B has a
COMPENSATION field.

This COBOL example illustrates field name variable processing in the following
way:

• In EDITLIST-1, the field name variables (%%STATUS and %%SALARY)
represent the actual field names in the two record types.

• The IFGETC call compiles the GET specification. This specification is then
executed by the two IFGETE calls.

• The field names are assigned by EDITLIST-2 depending on the record type
encountered. For record type A, field names are STATUS and SALARY,
for record type B, field names are COMPENSATION and
PERFORMANCE.

����:25.�5(&�

�������5(&�7<3(����������3,&�;�

�������:25'�661����������3,&������

�������:25.�1$0(���������3,&�;�����

�������:25.�%'$7(��������3,&������

�������:25.�6&'$7(�������3,&������

�������),//(5������������3,&�;����

�������:25.�*5$'(��������3,&������

�������:25.�67(3���������3,&������

�������:25.�67$786�������3,&�;����

�

�

�

����$//�3$506�

�������5(7&2'(�����������3,&������&203�6<1&�

�������&1$0(�������������3,&�;����9$/8(�·)7&+5(&�·�

�������',5���������������3,&���&203�6<1&�9$/8(���

�������',5���������������3,&���&203�6<1&�9$/8(���

�������(03&85������������3,&�;����9$/8(�·(03&85�·�

�������5(&�$�������������3,&�;�����9$/8(�

����·67$786�6$/$5<·�

�������5(&�%�������������3,&�;�����9$/8(

����·3(5)250$1&(�&203(16$7,21·�
Host Language Interface Programming Guide 7-23

�

�

�

���3(5&(17�3$506�

������(',7/,67�����������3,&�;������9$/8(

������·(',7��5(&�7<3(�661�1$0(�%'$7(�6&'$7(�*5$'(�

������67(3���67$786���6$/$5<�

�������$����$����$������$����;�����-����$����$�����·�

������(',7/,67�����������3,&�;�����9$/8(

������·(',7���67$786��6$/$5<��$�����$������·�

�

�

�

&$//�·,))7&+·�86,1*�5(7&2'(�:25.�5(&�',5��(03&85�

������&1$0(�(',7/,67���

�

�

�

,)�5(&�7<3(·$·�7+(1

&$//�·,))7&+·�86,1*�5(7&2'(�:25.�5(&�',5��(03&85�

������&1$0(�5(&�$�(',7/,67���

�

�

�

,)�5(&�7<3(·%·�7+(1

&$//�·,))7&+·�86,1*�5(7&2'(�:25.�5(&�',5��(03&85�

������&1$0(�5(&�%�(',7/,67���

�

�

���

Field name variable errors

When you use a field name variable, Model 204 defers validity checks, which
would normally be performed when a specification is compiled, until the
specification is executed and the actual field name is filled in.

You might encounter the following errors for field name variables:

• If the field name variable specified in an IFFIND call is not valid, Model 204
does not execute the call.

• If a missing field name is encountered when processing IFUPDT or IFPUT,
Model 204 aborts processing of the field name list and returns a completion
code of 4.

• If a missing field name is encountered when processing IFFTCH or IFGET,
Model 204 returns a null string value as if the field were missing from the
record.
7-24 Model 204

8
Find Criteria for Model 204 Data

In this chapter

• Overview

• Find criteria in HLI calls

• File search operations

• Specifying find criteria: character values

• Specifying find criteria: numeric values

• Defining a numeric value in exponent notation

• Specifying find criteria: special conditions

• Using comparison operators

• Using Boolean operators

• Specifying find criteria: pattern matching
Host Language Interface Programming Guide 8-1

Overview

This chapter describes how to specify find criteria to select data from the
Model 204 database for application programmers who are using the Host
Language Interface facility.

Refer to the Model 204 Host Language Interface Reference Manual for a
description of HLI calls. Refer to the Model 204 User Language Manual for
complete information about selecting data.

For more information

Refer to Chapter 7 for a description of fields and variables. Refer to Chapter 6
for a description of files and records.

Refer to the Model 204 Host Language Interface Reference Manual for a
description of HLI calls. Refer to the Model 204 User Language Manual for
complete information about selecting data.
8-2 Model 204

Find criteria in HLI calls

An HLI application program specifies find criteria in calls that perform find
functions. To select data from the Model 204 database, specify find criteria
using any of the following HLI calls on an IFSTRT thread. On an IFDIAL thread
you can also specify find criteria using the equivalent User Language
command, which is listed beside each HLI call:

A find specification can include a combination of conditions that might require
a mix of index and direct searches against the database. See “File search
operations” on page 8-5 for more information about index and direct searches.

Model 204 selects records in order by one of the following storage schemes,
based on the file type:

• In record number sequence, for records in an entry order or hashed file

• In sort key sequence, for records in a sorted file

• In a particular collating sequence, for records in an ordered file

Refer to Chapter 6 for more information about different types of data files.

Specifying all records to be selected

An HLI application program can select all records in the current file or group by
omitting criteria in the find specification. To specify all records to be selected,
use the following entry in the find specification in the HLI call:

�(1'��

Specifying particular records to be selected

To select a particular group of records from a file of group for processing, an
HLI application program must specify find criteria. A single HLI call can include
multiple conditions for selecting data in a find specification.

Specify find criteria using either:

• Values, to select fields that contain numeric and character values

• Patterns, to select a field value based on a character string pattern

HLI call Equivalent User Language command

IFFAC FIND AND PRINT COUNT

IFFDV FIND ALL VALUES

IFFIND FIND

IFFNDX FIND EXCLUSIVE

IFFWOL FIND WITHOUT LOCKS
Host Language Interface Programming Guide 8-3

Model 204 performs two basic kinds of find criteria comparisons, numeric and
character, based on the type of data that is stored in a file.

Refer to the Model 204 User Language Manual for complete information about
find criteria and examples of find specifications.
8-4 Model 204

File search operations

Each Model 204 file contains a data area and an index area. The data area,
Table B, contains the data records. The index area contains references to the
data records organized by key field and value.

Index search

When Model 204 locates records stored in the data area using the index area,
this is called an index search.

Usually, Model 204 searches the index, either the hash index (Tables C and D)
or the Ordered index (Table D, that is, the B-tree), for fields having any of the
following types of attributes:

• KEY

• ORDERED

• NUMERIC RANGE

When storing fields that have these attributes, Model 204 makes special
entries in the index. For certain types of find criteria using values, Model 204
directly accesses the appropriate index entry to find which records satisfy the
find criteria without searching through the records in the data area of the file.

Whether or not Model 204 uses the index depends on the type of find criteria
specified. See Table 8-1 on page 8-6 for a summary of file search operations
for fields having KEY, ORDERED, and NUMERIC RANGE attributes. Note that,
in general, find criteria based on KEY, ORDERED, or NUMERIC RANGE fields
are extremely fast and efficient.

Direct data search

In contrast to find criteria that involve an index search, the following types of
find conditions result in a direct search of the data in the Table B data area:

• Inequality character conditions

• IS PRESENT condition

• Conditions that specify fields having any of the following types attributes:

– NONKEY

– NONORDERED

– NONRANGE

Note: A direct search can have a significantly adverse effect on performance if
the search involves a large number of records. However, the cost can be
greatly reduced in some cases where both index and direct find criteria are
specified in the same HLI call.
Host Language Interface Programming Guide 8-5

When processing index and direct find criteria for the same HLI call, Model 204
reduces the number of records to be searched directly by performing the index
selection first. Model 204 does not search directly records that are either
selected or eliminated based on the index search.

File search for a group

When selecting data from a file group, Model 204 first determines which
records from the individual member files meet the selection specifications. This
yields a set of records that might contain entries from all files.

Model 204 then selects the individual records in order by file.

Summary of file search operations

Table 8-1 summarizes file search operations for an HLI call that finds records.
The type of file search depends on field attributes and on find criteria specified
in the call.

In Table 8-1, the search operations correspond to find criteria specified in the
following HLI calls: IFFIND, IFFAC, IFFWOL, and IFFNDX. The find criteria
listed in the table, that is, an equality, a character range, a numeric range, and
a character and numeric range combination, specify value criteria.

See “Specifying find criteria: character values” on page 8-7 for a description of
find specifications that specify value criteria. Refer to Chapter 7 for information
about field attributes.

Refer to the Model 204 User Language Manual for information about optimizing
file search operations for find specifications.

Data = Data area search in Table B
Index1 = Hash index search in Table C and, if needed, in Table D
Index2 = Ordered index search in Table D (B-tree)

Table 8-1. File search based on field attributes and find criteria

Type of
Find Criteria

Field Attribute

Key Numeric
range

Ordered Key and Ordered Other

Number Character Number Character

Equality Index1 Index1 Index2 Index2 Index1 Index1 Data

Character
range

Data Data Data Index2 Data Index2 Data

Numeric range Data Index1 Index2 Data‘ Index2 Data Data

Character and
numeric range

Data Data Data‘ Index2 Data Index2 Data
8-6 Model 204

Specifying find criteria: character values

You can specify selection criteria that tests the values of a field to determine
whether a record with a particular value, either character or numeric, is
selected.

You can specify any of the following types of find criteria using values:

• Equality (using an equal sign)

• Character range

• Numeric range

• Character and numeric range combination

The following sections give basic guidelines for use, general syntax, and
examples of value find criteria. Table 8-2 on page 8-16 summarizes the
operators that are valid for use in find specifications with value criteria.

Specifying find criteria using character values

With character find criteria you can test a field that contains character string
values to locate records that have a particular value or range of values. The
comparison uses the EBCDIC collating sequence.

Specify character find criteria using any of the following formats:

ILHOG�QDPH� �YDOXH�

ILHOG�QDPH� �127�YDOXH�

ILHOGQDPH�^,6�_�,6�127`�>$/3+$%(7,&$//<@�^%()25(�_�$)7(5�

��������_�RSHUDWRU`�YDOXH

where operator specifies one of the range operators in Table 8-2 on page 8-16.

You can specify character find criteria for a KEY or NONKEY field. Note,
however, that selection of KEY fields is substantially more efficient than
selection of NONKEY fields.

Refer to the Model 204 User Language Manual for more information about
character values used in find specifications.

Character find criteria with an equality condition

The following examples illustrate character value find criteria that specify an
equality condition.

In the following example, the field name is TOWN and the value is
CAMBRIDGE. The following find criterion specifies employees who live in
CAMBRIDGE:

72:1 &$0%5,'*(�(1'��
Host Language Interface Programming Guide 8-7

Alternatively, the following find criterion specifies employees who do not live in
CAMBRIDGE:

72:1 127�&$0%5,'*(�(1'��

Character find criteria with a range condition

The following examples illustrate character value find criteria that specify a
range condition:

• In the following example, the field is NAME and the value is SMITH. The
following find criterion specifies names that precede the value SMITH in
EBCDIC collating sequence:

1$0(�,6�%()25(�60,7+�(1'��

In this example, the BEFORE SMITH specification selects records that
contain the value NAME=SMALL but does not select records that contain
the value NAME=SMITHIE.

• In the following example, the field is NAME. The following find criterion
specifies names that do not follow the value WALKER in EBCDIC collating
sequence:

1$0(�,6�127�$)7(5�:$/.(5�(1'�

• In the following example, the field is NAME. The following find criterion
specifies names that do not precede the value JOHNSTON in EBCDIC
collating sequence:

1$0(�,6�127�$/3+$�/7�-2+16721�(1'��

• In the following example, the field is NAME. The following find criterion
specifies names that follow THORNE and precede THYME (such as,
THULE) in EBCDIC collating sequence:

1$0(�,6�%()25(�7+<0(�$1'�$)7(5�7+251(�(1'��

• In the following example, the field is NAME. The following find criterion
specifies a negative relation and selects names equal to and preceding
THORNE and equal to and following THYME in EBCDIC collating
sequence:

1$0(�,6�127�%()25(�7+<0(�$1'�$)7(5�7+251(�(1'�
8-8 Model 204

Specifying find criteria: numeric values

With numeric find criteria you can test a field for numerical values less than,
greater than, or equal to a particular value. You can specify negative numbers.

You can specify numeric find criteria for fields that have any of the following
attributes:

• ORDERED NUMERIC

• NUMERIC RANGE

• NONRANGE

Specify numeric find criteria using either of the following formats:

ILHOGQDPH� �YDOXH�

ILHOGQDPH�^,6�_�,6�127`�>180(5,&$//<@�>RSHUDWRU@�YDOXH

where operator specifies one of the range operators in Table 8-2 on page 8-16.

Rules for specifying numeric range find criteria

The following rules apply for specifying numeric range find criteria:

• When you specify IS, Model 204 selects records in which the content of the
numerical field is algebraically equivalent to the specified constant. Note
that this differs from specifying the equal sign (=), which results in a search
for an exact character match.

• A negated comparison operator (IS NOT) for numeric find criteria produces
a different result for a NUMERIC RANGE field and a NONRANGE or
ORDERED field.

See page “Field attributes and negated numeric find criteria” on
page 8-11for differences in find criteria for fields having different attributes.

• If a numeric range find is performed on a field that is defined with the
NUMERIC RANGE or ORDERED NUMERIC attribute, Model 204 finds
only those records where the numerical fields contain the following
characters:

– Optional leading plus (+) or minus (-) sign.

– Digits 0-9 and an optional decimal point.

– No more than 10 digits on either side of the decimal point, and a maxi-
mum of 20 digits, for NUMERIC RANGE fields.

– No more than 10 digits on either side of the decimal point for
ORDERED NUMERIC fields, and only the first 15 significant digits are
used.

See the next page for examples of specifications that contain the required
characters for NUMERIC RANGE and ORDERED NUMERIC fields.
Host Language Interface Programming Guide 8-9

Refer to the Model 204 User Language Manual for more information about
numeric find criteria.

Numeric find criteria with an equality condition

The following examples illustrate numeric value find criteria that specify an
equality condition.

There are differences using an equal sign (=) and the word IS in a numeric
specification. For example, the following find criterion selects only records that
contain a value of 37 in the field WEIGHT:

:(,*+7 ���(1'��

Alternatively, the following find criterion selects records that contain values of
37, 0037, 37.0, for WEIGHT, and that might include any other string whose
numerical value is 37:

:(,*+7�,6����(1'��

Fieldname=value pairs for numeric find criteria

The following examples are of valid fieldname=value pairs for fields defined
with NUMERIC RANGE or ORDERED NUMERIC attributes:

35,&(� ������

$*(� �����

92/80(� ����������

:$9(�/(1*7+� ��������

7(03(5$785(� �����

See “Specifying find criteria: numeric values” on page 8-9 for information about
valid characters for NUMERIC RANGE and ORDERED NUMERIC field values.

Numeric find criteria with a range condition

The following examples illustrate numeric value find criteria that specify a range
condition:

• In the following example, the field is SETTLEMENT DATE. The following
find criterion specifies dates that are less than the specified value 800305
(that is, before March 5, 1980):

6(77/(0(17�'$7(�,6���������

• In the following example, the field is AGE. The following find criterion
specifies ages that are greater than the specified value 20:

$*(�,6�180�$)7(5����
8-10 Model 204

In this example, NUM (NUMERICALLY) specifies that a numeric type
comparison be performed using the operator AFTER, instead of the default,
which is character comparison.

• In the following example, the field is AGE. The following find criterion
specifies records in which age is numerically less than 21:

$*(�,6�/(66�7+$1����(1'��

• In the following example, the field is AGE. The following find criterion
specifies records in which age is numerically equal to or greater than 21 (a
NUMERIC RANGE field attribute is assumed):

$*(�,6�127�/(66�7+$1����(1'��

• In the following example, the field is AGE. The following find criterion
specifies records in which age is numerically greater than 21:

$*(�,6�*5($7(5�7+$1����(1'��

• In the following example, the field is TEMPERATURE. The following find
criterion specifies records in which the value of temperature is numerically
less than minus 10 (degrees):

7(03(5$785(�,6�/(66�7+$1�����(1'��

• In the following example, the field is AGE. The following find criterion
specifies ages that are numerically greater than 21 and less than 25:

$*(�,6�%(7:((1����$1'����(1'�

• In the following example, the field is AGE. The following find criterion
specifies ages that are numerically less than or equal to 21 and greater than
or equal to 25 (a NUMERIC RANGE field attribute is assumed):

$*(�,6�127�%(7:((1����$1'����(1'��

Field attributes and negated numeric find criteria

For numeric find criteria that specify a negated condition, the set of records
selected depends on whether the field is defined with the NUMERIC RANGE,
ORDERED, or NONRANGE attribute.

In the following example, the field is AGE. The following negated find criterion
specifies records in which age is not less than 21:

$*(�,6�127�/(66�7+$1����(1'��

Using this example, Model 204 selects records differently based on the field
attributes defined for AGE, as follows:
Host Language Interface Programming Guide 8-11

• If AGE is defined as NUMERIC RANGE, this statement selects records
containing AGE fields whose values are numerical and greater than or
equal to 21.

• If AGE is defined as NONRANGE or NONORDERED, this statement
selects records that do not contain AGE fields less than 21. However, the
selected records include those that contain nonnumerical AGE fields and
those that contain no AGE field.

• If AGE is defined as NONRANGE and INVISIBLE, this statement does not
select any records.

Specifying value find criteria using an IN RANGE clause

You can specify beginning and ending values in find criteria or combine
conditions in find criteria by using the IN RANGE clause.

Use the following form of the IFFIND, IFFAC, IFFNDX, and IFFWOL call to
specify a beginning and ending range of values:

ILHOGQDPH�^,6�_�,6�127`�>180(5,&$//<�_�$/3+$%(7,&$//<@

���,1�5$1*(�>)520�_�$)7(5@�YDOXH��^72�>$1'@�%()25(`�YDOXH�

Note the following uses for the IN RANGE clause:

• The IN RANGE clause is particularly useful when a beginning and ending
range of values must be specified for a multiply occurring field.

• If you use the IN RANGE clause for ORDERED fields, the find can be
optimized because the search on the Ordered Index is restricted between
two values.

Refer to the Model 204 User Language Manual for more information about the
IN RANGE clause.
8-12 Model 204

Defining a numeric value in exponent notation

You can define a numeric value in a find specification in exponential notation.

Exponential notation has the following format:

>���_���@^ZKROHBQXPEHU�_�ZKROHBQXPEHU�IUDFWLRQDOBQXPEHU�_

�����������IUDFWLRQDOBQXPEHU`�(>���_���@H[SRQHQW

where:

• A maximum of 15 significant digits is allowed for number values. If the
number of significant digits exceeds 15, the remaining precision is lost.

• The exponent expression must be between 75 and -75.

• Embedded spaces are not allowed in the exponent string.

The following examples are of valid numeric values expressed in exponent
notation:

���������(���

��(����

�����������(����

���(����

Refer to the Model 204 Host Language Interface Reference Manual for
descriptions of the IFFTCH and IFGET calls and for more information about
conversion of exponential numbers.

Refer to the Model 204 User Language Manual for more information about
exponent notation.
Host Language Interface Programming Guide 8-13

Specifying find criteria: special conditions

You can specify any of the following types of special conditions in find
specifications in HLI calls that find records (that is, an IFFIND, IFFAC, IFFWOL,
and IFFNDX):

• IS PRESENT condition, which selects only records that contain at least one
occurrence of the specified field regardless of its value.

In the following example, the specification locates all records that contain
one or more occurrences of the field CHILD:

&+,/'�,6�35(6(17�(1'��

Alternatively, in the following example, the specification locates all records
that do not contain a ZIP CODE field:

=,3�&2'(�,6�127�35(6(17�(1'��

• FIND$ condition, which selects a set of records previously selected.

• SFL$ condition, which selects all records for which the sort field is less than
the stated value.

• SFGE$ condition, which selects all records for which the sort field is greater
than or equal to the stated value.

In the following example, from a file sorted by last name, the specification
selects the records for all males starting at JONES:

6)*(��-21(6�6(; 0$/(�(1'���

And, in the following example, the specification locates records of all last
names starting with the letter K:

6)*(��.�6)/��.����(1'��

• POINT$ condition, which selects all records in a file that contain internal
record numbers greater than or equal to a specified value. (POINT$ is not
valid in group context.)

In the following example, the statement selects all records in which AGE is
greater than 20, and in which record numbers range from 288 to 5000
inclusive:

$*(�,6�*5($7(5�7+$1����32,17������$1'�

127�32,17�������(1'��

• FILE$ condition, to restrict files from which records meeting the specified
criteria are selected.

In the following example, if the program has opened group REGION, which
contains files MARYLAND, VIRGINIA, and DELAWARE, the specification
finds all males in the group who do not live in Delaware:
8-14 Model 204

6(; 0$/(�127�),/(��'(/$:$5(�(1'��

In the following example, if the program has opened group REGION, which
contains files MARYLAND, VIRGINIA, and DELAWARE, the specification
finds all males in the group who live in Delaware or Virginia:

6(; 0$/(�),/(��'(/$:$5(�25�9,5*,1,$�(1'��

• LIST$ condition, which finds records that are on a list.

In the following example, to find all males on list A1, the find specification is:

6(; 0$/(�/,67��$��(1'�

Refer to the Model 204 User Language Manual for complete information about
the special find conditions.
Host Language Interface Programming Guide 8-15

Using comparison operators

Table 8-2 summarizes the comparison operators that are valid for use in find
specifications with character and numeric values.

Except for AFTER and BEFORE, which default to character-string comparison
in EBCDIC sequence, the operators in Table 8-2 default to numeric
comparison.

Table 8-2 does not show the IN RANGE clause, which defaults to numeric
comparison, and the IS PRESENT condition, which defaults to character-string
comparison.

Operator and value type mismatch

The following results occur when an operator and value type are not matched:

Table 8-2. Comparison Operators

IS operator Abbreviation Symbol The field value must be...

Numeric comparison

EQUAL EQ = Equal to the value specified.

NOT EQUAL NE ¬= Unequal to the value specified.

LESS THAN LT < Less than the value specified.

LESS THAN
OR EQUAL
TO

LE <= Less than or equal to the value
specified.

GREATER
THAN

GT > Greater than the value specified.

GREATER
THAN OR
EQUAL TO

GE >= Greater than or equal to the value
specified.

BETWEEN
value1 AND
value2

-- -- Between value1 and value2. If the
field value is equal to value1 or
value2, Model 204 does not select
the record.

Note: If value1 is greater than
value2, Model 204 does not select
any records.

Character-string comparison (EBCDIC collating sequence)

AFTER -- -- After the specified value or string

BEFORE -- -- Before the specified value or string
8-16 Model 204

• If a specification uses a numeric operator with a nonnumerical value,
Model 204 does not select any records. The following example illustrates
this type of mismatch:

/$67�1$0(�,6�*5($7(5�7+$1�$1'5(:6���

• If a specification uses a numeric operator with a nonnumerical value and is
negated, Model 204 selects every record in the file or group. The following
example illustrates this type of mismatch:

/$67�1$0(�,6�127�*5($7(5�7+$1�$1'5(:6�

• If a specification uses a character string operator with a numeric value,
Model 204 converts all numeric values in the field to character strings and
performs a character-by-character comparison of field values to the find
criteria.

The following example illustrates this type of mismatch:

<($5�,6�%()25(������

In this example, numbers such as 942, 700, or 2 would not be selected.

Note: To avoid unexpected results when using an operator that defaults to
numeric comparison in character value find criteria, specify ALPHA
(ALPHABETICALLY).

Interpretation of values used in find criteria

During data selection, Model 204 interprets numbers, strings, and exponential
notation in value find criteria. Model 204 determines how to interpret values
based on the type of find criteria (equality or range) and operators that the
condition specifies.

Model 204 performs either a character or numeric comparison. The following
sections describe the comparisons that Model 204 performs for equality and
range conditions specified in find criteria. See Table 8-2 on page 8-16 for a list
of operators and default comparisons.

Equality conditions in find criteria

For an equality condition in a find specification (having the form
fieldname = value), Model 204 interprets the value differently depending on
whether or not the field is defined with the FLOAT field attribute.

Model 204 performs comparisons for equality find criteria based on the
following rules:

• If the field is defined with the FLOAT attribute, Model 204 examines the
value to determine whether it is a number, exponent notation, or a character
string.
Host Language Interface Programming Guide 8-17

Depending on the value type, Model 204 performs one of the following
comparisons:

– Numeric comparison, if the value is a number or in exponent notation.

– Character string comparison, if the value is a character string.

• If the field is not defined with the FLOAT attribute, Model 204 treats the
value as a string and performs a character string comparison.

Note: For a non-FLOAT field, Model 204 does not convert exponent
notation to a numerical form. For example, if a field that is not defined with
the FLOAT attribute contains a value of .1234E-3, the comparison .1234E-
3 = .0001234 is not true.

Range conditions in find criteria

For either of the following types of range find criteria, Model 204 interprets the
value differently depending on whether or not the condition specifies the
NUMERICALLY or ALPHABETICALLY keyword:

• Having the form:

ILHOGQDPH�,6�RSHUDWRU�YDOXH�

• Using the IN RANGE clause

Depending on the keyword, Model 204 performs comparisons for range find
criteria based on the following rules:

• If the condition specifies the NUM (NUMERICALLY) keyword, Model 204
interprets the value as a number and performs a numerical comparison.

• If the condition specifies the ALPHA (ALPHABETICALLY) keyword,
Model 204 interprets the value as a string and performs a character string
comparison.

• If the condition does not specify either the NUMERICALLY nor
ALPHABETICALLY keyword, Model 204 interprets the value and performs
the comparison according to the default comparison type of the operator.

See Table 8-2 on page 8-16 for a list of operators and default comparisons.
8-18 Model 204

Using Boolean operators

The following guidelines apply for using Boolean operators to specify find
criteria:

• Find criteria can combine several Boolean operators as well as character
and numeric comparison operators. You can use AND, OR, NOT, NOR,
and parentheses to combine conditions in find criteria.

• Interpretation of a Boolean expression proceeds from left to right, except
where the order of precedence dictates otherwise.

• An operation of higher precedence following an operation of lower
precedence is performed first.

• Expressions enclosed inside parentheses are evaluated first. You can nest
parentheses, in which case evaluation proceeds from the innermost to the
outermost set.

Table 8-3 shows the order of precedence that Model 204 follows when
evaluating multiple Boolean operations in a find criterion.

The following examples of find specifications with Boolean operators show the
basic form of these specifications. Refer to the Model 204 User Language
Manual for more information about Boolean operators.

Using Boolean operators to combine conditions

The following examples illustrate the basic form of a find specification that uses
Boolean operators to combine conditions:

• In the following example, the field name is TOWN. The following find
criterion specifies employees who live in CAMBRIDGE and in CHICAGO:

72:1 &$0%5,'*(�25�72:1 &+,&$*2�(1'��

• The following specification shows how to modify the above example and
produce the same results; the second TOWN= can be omitted:

72:1 &$0%5,'*(�25�&+,&$*2�(1'��

Table 8-3. Order of precedence for Boolean operators

Order Operator

1st NOT

2nd NOR

3rd AND

4th OR

5th AND (implied by a new line)
Host Language Interface Programming Guide 8-19

• In the following example, the field name is TOWN. The following find
criterion specifies all employees except those who live in CAMBRIDGE,
CHICAGO, and NEWPORT:

72:1 127�&$0%5,'*(�125�&+,&$*2�125�1(:3257�(1'�

• In the following example, the field name is SKILL (in a personnel file). The
following find criterion specifies employees who have a certain job skill
combination, that is, typing and proficiency in the French language:

6.,// 7<3,1*�$1'�)5(1&+�(1'�

• In the following example, the field name is SKILL. The following find
criterion specifies employees who have a certain job skill (steno) and not
another (typing):

6.,// 67(12�$1'�127�7<3,1*�(1'��

Note: You can also combine find criteria using several Boolean operators as
well as comparison operators for character and numeric values. Refer to the
Model 204 User Language Manual for additional examples of find criteria using
Boolean operators.
8-20 Model 204

Specifying find criteria: pattern matching

You can specify find criteria using a field value that is in the form of a pattern.
Specify patterns using the find calls: IFFIND, IFFAC, IFFWOL, IFFNDX, or
IFFDV.

Using pattern find criteria, Model 204 does not process records for which the
field specified in the find criteria is not present. For a character string find
specification on a multiply occurring field, Model 204 selects all records with at
least one occurrence of the field that meets the specified condition.

Note: Model 204 evaluates the pattern for each value in the specified field and
selects those values that match the criteria in the pattern. Selected values must
match patterns character by character, including blanks, except when special
characters are used.

Specify a pattern-matching condition using the following format:

ILHOGQDPH�>,6�_�,6�127@�/,.(�´SDWWHUQµ

where:

• The keyword LIKE indicates that a pattern follows.

• pattern is enclosed in quotes. Model 204 treats a pattern like a character
value that requires quotation marks to conform to User Language format
requirements.

For more information about using quotes in User Language, refer to the
Model 204 User Language Manual.

Table 8-4 summarizes the character codes that you can use to specify pattern-
matching find criteria. Refer to the Model 204 User Language Manual for more
information about pattern-matching find criteria and for explanations of the
character symbols used to specify pattern-matching conditions.

Table 8-4. Pattern-matching codes for a FIND specification

Character Symbol Description

Asterisk * Wildcard

Plus sign + Placeholder

Comma , Or

Parentheses () Sets begin and end

Hyphen - Range

Slash / Repeat

Exclamation point ! Escape

Equal sign = Hexadecimal

Number sign # Numeric digit
Host Language Interface Programming Guide 8-21

If the value of either of the following parameters is set as indicated, you must
reset it before you can use the corresponding pattern character during line
editing:

• ERASE parameter value is an alphabetic character (@)

• FLUSH parameter value is a numeric digit character (#)

For more information about the ERASE and FLUSH parameters, refer to the
Model 204 Command Reference Manual.

At sign @ Alphabetic

Table 8-4. Pattern-matching codes for a FIND specification (Continued)

Character Symbol Description
8-22 Model 204

9
Locking Behavior of HLI Calls

In this chapter

• Overview

• Locking facility

• File locking

• Record locking on found sets

• SHR lock on the current record

• EXC lock on the current record

• Record locking: sample processing loops

• Releasing record locks

• Locking functions
Host Language Interface Programming Guide 9-1

Overview

This chapter describes Model 204 resource locking and record locking for
application programmers who are using the Host Language Interface facility.
Refer to the descriptions of locking behavior for HLI calls when you are coding
your host language program.

Refer specifically to information about the record locking behavior of multiple
cursor IFSTRT thread calls if you are using multiple cursor features in your HLI
program for the first time.

For more information

Refer to Chapter 10 for a description of locking conflicts and how to handle
them in your HLI application. Refer to the Model 204 User Language Manual
and Model 204 System Manager’s Guide for more information about record
locking.

Refer to Chapter 2 for more information about using HLI calls on IFSTRT
threads. Refer to the Host Language Interface Reference Manual for a
description of the HLI calls shown in the examples.
9-2 Model 204

Locking facility

Model 204 controls user access to file resources with a facility called resource
locking. Record locking prevents conflicting, simultaneous use of records when
several users have access to the same files or groups and protects against the
concurrent updating of certain data by different users.

With locking, Model 204 allows a particular resource or record to be shared
between users or locks access to a resource or record so that it can be used
exclusively by a user.

Locking at the thread level

Model 204 locks resources and records for HLI processing at the thread level
(for an IFSTRT thread and for an IFDIAL thread).

A resource or record that is shared by more than one thread is locked by each
thread whether those threads are used in the same host language program,
such as in a multithreaded IFAM4 job, or in different host language programs,
for example, in two different IFAM2 jobs.

Enqueuing actions

For HLI functions that lock resources or records, if enqueuing actions are
successful, Model 204 locks the resource or record in either of the following
modes:

Most HLI functions automatically enqueue on the resources or records to which
they refer.

For example, retrieval functions, such as IFFIND or IFFAC, enqueue in SHR
mode, which allows simultaneous retrievals of records by different users but
prohibits updating of those same records concurrently by other users. File
maintenance functions such as IFPUT or IFUPDT enqueue in EXC mode,
which locks out all other references.

In addition to the automatic enqueuing facilities, you can explicitly enqueue or
dequeue on resources and records in your host language application program.
See Table 9-1 on page 9-24 for a listing of HLI functions and enqueuing actions.

Mode Description

SHR In share mode, a lock allows one or more users to perform retrieval
functions on a file, record set, or record. Any number of users can have
shared control of a file, record set, or record concurrently.

EXC In exclusive mode, a lock allows a single user to update a file, record
set, or record. An exclusive lock is not compatible with other exclusive
locks nor with any shared locks. See “EXC lock on the current record”
on page 9-16 for information about different types of exclusive locks on
records.
Host Language Interface Programming Guide 9-3

Getting control of a resource or a record

If control of a resource or record cannot be gained, Model 204 either
immediately returns control to the application program with a function
completion code (RETCODE) of 3 or waits a certain number of seconds.

If a wait occurs, Model 204 then attempts enqueuing again and if the resource
or record is still unavailable, returns control to the application program with a
function completion code of 3.

For all functions except IFCHKPT, a completion return code of 3 indicates that
control of the resource or record could not be obtained. For calls that enqueue
on a resource or record, code your host language program to test for a return
code of 3 and, if desirable, to reissue the call.

Refer to Chapter 10 for a coding example that uses the Model 204 return code
to test for locking conflicts.

Specifying wait time within system limits

You can specify a wait time for any of the following enqueuing calls: IFOPENX,
IFFNDX, IFGETX, IFMOREX, IFENQL, and IFENQ.

Caution: Although there is no restriction on the wait time you can specify,
setting the time to a very large number might exceed the system’s wait-time
limit; if the system’s time limit is exceeded, a program ABEND occurs.

See “Locking functions” on page 9-23 for more information about wait times for
HLI calls. Check with your Model 204 system administrator for information
about system wait times.

Releasing a resource or record

With HLI functions that dequeue (release) locks on resources or records,
dequeuing actions are performed immediately; there is no wait time.

Locking behavior of IFSTRT calls

The remaining sections describe the locking behavior of HLI calls that are
issued on an IFSTRT thread. Refer to the Model 204 User Language Manual
for information about locking behavior that applies to processing User
Language requests in an IFDIAL application.

Guidelines to avoid locking conflicts

Design your HLI application to enqueue on the fewest possible resources or
records, as needed. Release resources or records as often as possible, when
they are no longer needed.
9-4 Model 204

Code your HLI application to use a record locking strategy that avoids logical
inconsistencies, but that allows resources or records to be shared. This
guideline applies in particular to HLI jobs running in IFAM2 (which supports
multiple users) and to multithreaded IFAM4 applications (where conflicts can
occur between threads in the same HLI job).
Host Language Interface Programming Guide 9-5

File locking

A file is a resource. Model 204 enqueues a file when an HLI application issues
a call to open a file, with IFOPEN or IFOPENX. IFOPEN enqueues a file in SHR
mode, while IFOPENX enqueues a file in EXC mode.

Caution: IFOPENX locks out all other Model 204 users and threads from
accessing a file. In IFAM2, IFOPENX prevents any User Language request or
other HLI application from processing against the opened file.

Read-only file access in IFAM2 and IFAM4

For certain HLI applications that use IFSTRT threads, the IFSTRT thread type
might determine the type of file access. For IFAM2 and IFAM4 jobs, the
following IFSTRT thread types are available:

In IFAM2 and IFAM4, a read-only IFSTRT thread allows SHR access to a file.
You can use a password that allows either read-only or update privileges, but
you cannot issue calls that perform update operations.

For example, if you set the IFSTRT thread indicator to read-only (THRD_IND
is 0), Model 204 rejects a call at execution time that attempts to perform an
update operation such as IFPUT and returns an error completion code
(RETCODE) of 40.

Note: To update files in an IFAM2 or IFAM4 job, you must issue IFSTRT with
thread update privileges (THRD_IND is 1 or 2) and you must enter file or group
passwords that have update privileges.

Using a password with update privileges

HLI application programs that share the same copy of the HLI Model 204
service program, such as in IFAM2, can share files regardless of password
privileges.

Operating system enqueuing

Between HLI applications that use different copies of Model 204, a file resource
might be locked. If an HLI application opens a file using a password that allows
updating privileges, an attempt to open that file by any other HLI application
that uses a different copy of Model 204 is unsuccessful.

Thread type Allows...

0 Read-only access (regardless of password used)

1 Updates (password privileges determine type of access)

2 Multiple-cursor functionality (password determines access)
9-6 Model 204

The following table summarizes file locking behavior between HLI applications.
Each HLI application listed on the left opens a file using a password with update
privileges. The HLI applications listed on the right are locked from accessing
the open file.

Model 204 performs either of the following actions depending on which type of
HLI job attempts to open a locked file.

In IFAM1 and IFAM4, the same file can be defined (DISP=SHR) in different HLI
jobs. Model 204 performs resource locking at the operating-system level to
control access to files that are shared by more than one copy of the HLI
Model 204 service program in IFAM1 and IFAM4.

Note that enqueuing at the operating-system level is distinct from file-level
enqueuing with IFOPEN and IFOPENX.

Refer to the Model 204 System Manager’s Guide for more information about
file resource locking at the operating-system level.

Open file w/ update privileges: File resource is locked to...

IFAM1 Other IFAM1; IFAM2; IFAM4

IFAM2 IFAM1; IFAM4

IFAM4 IFAM1; IFAM2; other IFAM4

If the file resource is locked to... Then Model 204 issues...

IFAM1 application WAITING FOR ACCESS message and the
IFAM1 application waits for the file.

IFAM2 or IFAM4 application FILE IS IN USE message and returns an
IFOPEN completion code of 260 (an error).
Host Language Interface Programming Guide 9-7

Record locking on found sets

Model 204 adheres to a specific set of rules for record locking behavior. The
record locking behavior of the following HLI functions, which create found sets,
is described in the following sections:

The record locking behavior of the IFDSET function, which deletes a found set,
is described on page 9-14.

IFFAC and IFFIND lock in SHR mode

Both the IFFAC (FIND AND COUNT) and IFFIND (FIND) functions immediately
lock the set of found records in SHR mode. If the locking is successful, none of
the records in the found set can be updated by another user or thread until the
records are released.

On a single cursor IFSTRT thread, an IFFIND that is executed in a loop
releases the old found set as soon as the function is reexecuted. The final set
selected by the IFFIND remains locked (in SHR mode) until the end of the
transaction. Also, on a single cursor IFSTRT thread, each record is removed
from the found set and the SHR lock released as it is processed by IFGET.

On a multiple cursor IFSTRT thread, records are held until explicitly released
by a call to IFRELR or IFRELA, or until the entire transaction has been
completed.

Note: When updating records after using IFFIND, you are moving from a SHR
lock to an EXC lock, and the update fails, if any other user has obtained a SHR
lock on the records. This is likely to occur in a busy system.

IFFDV locks a value set

The IFFDV (FIND ALL VALUES) function operates in the following manner,
depending on the field attribute:

• If the field has the FRV attribute, the value set is locked in EXC mode until
all values are collected. The EXC lock is released after all values are found.

• If the field has the ORDERED attribute, no locking is performed.

HLI function Equivalent User Language command

IFFAC FIND AND COUNT

IFFIND FIND

IFFDV FIND VALUES

IFFNDX FIND EXCLUSIVE

IFFWOL FIND WITHOUT LOCKS
9-8 Model 204

IFFNDX locks in EXC mode

The IFFNDX (FIND EXCLUSIVE) function enqueues in EXC mode to lock a set
of records.

You can use IFFNDX to lock a record set for loop processing. However, when
using IFFNDX, concurrence is reduced, because records are exclusively
locked; none of the records in the found set can be retrieved or updated by
another user or thread. Records found using IFFNDX are held in EXC status
until they are released.

Issue IFRELR, IFRELA, or IFCMTR to explicitly release records locked in EXC
mode by IFFNDX.

Note the following considerations when using IFFNDX:

• Because IFFNDX fails if any of the records that it needs are locked in SHR
or EXC mode by other users, it has a good chance of failing in busy
systems.

To update a large set of records without locking the entire set, place the
records to be updated on a list and then issue the IFUPDT on each record
as you update it.

• IFFNDX guarantees that subsequent record updates succeed, because the
records are already exclusively locked.

In the following example, a host language application exclusively locks two
record sets. The first IFFNDX prevents access to TOTAL PREMIUM in the
CLIENTS file while the corresponding VEHICLE PREMIUMs in the VEHICLES
file are being changed. The application updates both files. This example shows
HLI processing on a multiple cursor IFSTRT thread.

:25.,1*�6725$*(�6(&7,21�

��&$//�$5*6�

��5(7&2'(3,&������&203�6<1&�

��',53,&������&203�6<1&�9$/8(�����

��:.�9$56�&203�6<1&�

��),1'�6:,7&+3,&���9$/8(�=(52�

��6(7�6:,7&+3,&���9$/8(�=(52�

��935(0�$073,&������9$/8(�=(52�

��727$/�35(0�$073,&������9$/8(�=(52�

��9727�83'$7(63,&������9$/8(�=(52�

��&727�83'$7(63,&������9$/8(�=(52�

��&/,(17�),/(�,1)2�

��&/,(17�),/(�1$0(3,&�;����9$/8(��&/,(176���

��&/,(17�),/(�3$66:3,&�;����9$/8(��&83'$7(6���

��9(+,&/(�),/(�,1)2�

��9(+,&/(�),/(�1$0(3,&�;����9$/8(��9(+,&/(6���

��9(+,&/(�),/(�3$66:3,&�;����9$/8(�·983'$7(6���

��),1';�&/,(176�

��);63(&�&/,(1763,&�;�����9$/8(�

�,1�&/,(176�)'�32/,&<�12 �������5(&7<3(32/,&<+2/'(5���

��:$,7�7,0(3,&����9$/8(����
Host Language Interface Programming Guide 9-9

��);1$0(�&/,(1763,&�;����9$/8(��);&/,(176���

��(1'�&$//3,&�;����9$/8(��(1'���

��),1';�9(+,&/(6�

��);63(&�9(+,&/(63,&�;�����9$/8(�

�,1�9(+,&/(6�)'�2:1(5�32/,&< ���������

��:$,7�7,0(3,&����9$/8(����

��);1$0(�9(+,&/(63,&�;����9$/8(��);9(+,&/(6���

��(1'�&$//3,&�;����9$/8(��(1'���

��&2817�9$56�

��&28173,&������

��&/,(17�&28173,&������9$/8(�=(52�

��9(+,&/(�&28173,&������9$/8(�=(52�

��9&85625�3$506�

��9&8563(&3,&�;�����9$/8(��,1�);9(+,&/(6���

��9&851$0(3,&�;����9$/8(��9&85625���

��&&85625�3$506�

��&&8563(&3,&�;�����9$/8(��,1�);&/,(176���

��&&851$0(3,&�;����9$/8(��&&85625���

��9(+,&/(�5(&�

��2:1(5�32/,&<�123,&������9$/8(�=(52�

��9(+,&/(�,'�123,&������9$/8(�=(52�

��9(+,&/(�35(0,80�$073,&������9$/8(�=(52�

��&/,(17�5(&�

��&/,(17�32/,&<�123,&�����9$/8(�=(52�

��&/,(17�7<3(3,&�;�����9$/8(�63$&(6�

��&/,(17�35(0,80�727$/3,&������9$/8(�=(52�

��9'7�63(&3,&�;�����9$/8(

�(',7�2:1(5�32/,&<�9,1�9(+,&/(�35(0,80��$����$����$�������

��&'7�63(&3,&�;�����9$/8(

�(',7�32/,&<�12�5(&7<3(�727$/�35(0,80��$����$�����$�������

�

�

�

352&('85(�',9,6,21�

&$//��,)6757����

�23(1�'7�),/(6�

�

3(5)250�23(1�),/(6�817,/�5(7&2'(�,6�127�(48$/�72�=(52�25

6(7�6:,7&+�,6�127�(48$/�72�=(52�

,)�5(7&2'(�,6�127�(48$/�72�=(52�7+(1

*2�72�(5525�571�

�),1'�5(&25'6�72�%(�83'$7('

3(5)250�),1'�571�817,/�5(7&2'(�,6�127�(48$/�72�=(52�25

),1'�6:,7&+�,6�127�(48$/�72�=(52�

,)�5(7&2'(�,6�127�(48$/�72�=(52�7+(1

*2�72�(5525�571�

�83'$7(�9(+,&/(6�),/(

9-10 Model 204

3(5)250�9(+,&/(6�83'$7(�817,/�5(7&2'(�,6�127�(48$/�72�=(52�25

9(+,&/(�&2817�,6�(48$/�72�=(52�

',63/$<��727$/�9(+,&/(�5(&25'6�83'$7('�,6���9727�83'$7(6�

,)�5(7&2'(�,6�127�(48$/�72�=(52�7+(1

*2�72�(5525�571�

029(�=(52�72�6(7�6:,7&+�

3(5)250�&85625�571�817,/�5(7&2'(�,6�127�(48$/�72�=(52�25

6(7�6:,7&+�,6�127�(48$/�72�=(52�

,)�5(7&2'(�,6�127�(48$/�72�=(52�7+(1

*2�72�(5525�571�

�83'$7(�&/,(176�),/(

3(5)250�&/,(176�83'$7(�817,/�5(7&2'(�,6�127�(48$/�72�=(52�25

&/,(17�&2817�,6�(48$/�72�=(52�

',63/$<��727$/�&/,(17�5(&25'6�83'$7('�,6���&727�83'$7(6�

,)�5(7&2'(�,6�127�(48$/�72�=(52�7+(1

*2�72�(5525�571�

029(�=(52�72�6(7�6:,7&+�

3(5)250�(1'�83'$7(6�817,/�5(7&2'(�,6�127�(48$/�72�=(52�25

6(7�6:,7&+�,6�127�(48$/�72�=(52�

,)�5(7&2'(�,6�127�(48$/�72�=(52�7+(1

*2�72�(5525�571�

3(5)250�(1'�-2%�571��

68%5287,1(�72�23(1�9(+,&/(6�$1'�&/,(176�),/(6

23(1�),/(6�

&$//��,)23(1��86,1*�5(7&2'(�&/,(17�),/(�,1)2���

&$//��,)23(1��86,1*�5(7&2'(�9(+,&/(�),/(�,1)2��

029(���72�6(7�6:,7&+�

68%5287,1(�72�),1'�5(/$7('�5(&25'6�,1�%27+�),/(6�

+2/'6�),/(6�(;&/86,9(/<�

),1'�571�

&$//��,))1';��86,1*�5(7&2'(�);63(&�&/,(176�:$,7�7,0(�

);1$0(�&/,(176�(1'�&$//�

&$//��,)&2817��86,1*�5(7&2'(�&2817�);1$0(�&/,(176�

029(�&2817�72�&/,(17�&2817�

',63/$<��727$/�&/,(17�5(&25'6�)281'�,6���&/,(17�&2817�

&$//��,))1';��86,1*�5(7&2'(�);63(&�9(+,&/(6�:$,7�7,0(�

);1$0(�9(+,&/(6�(1'�&$//�

&$//��,)&2817��86,1*�5(7&2'(�&2817�);1$0(�9(+,&/(6�

029(�&2817�72�9(+,&/(�&2817�

',63/$<��727$/�9(+,&/(�5(&25'�)281'�,6���9(+,&/(�&2817�

&$//��,)2&85��86,1*�5(7&2'(�9&8563(&�9&851$0(��

029(���72�),1'�6:,7&+�

&85625�571�

&$//��,)&&85��86,1*�5(7&2'(�9&85625�
Host Language Interface Programming Guide 9-11

&$//��,)2&85��86,1*�5(7&2'(�&&8563(&�&&851$0(�

029(�����72�6(7�6:,7&+�

68%5287,1(�72�83'$7(�35(0,80�$02817�,1�9(+,&/(6�5(&25'6

9(+,&/(6�83'$7(�

&$//��,))7&+��86,1*�5(7&2'(�9(+,&/(�5(&�',5�9&851$0(�

9'7�63(&�

029(�9(+,&/(�35(0,80�$07�72�935(0�$07�

$''�����72�935(0�$07�

$''�935(0�$07�72�727$/�35(0�$07�

029(�935(0�$07�72�9(+,&/(�35(0,80�$07�

&$//��,)83'7��86,1*�5(7&2'(�9(+,&/(�5(&�9&851$0(�

9'7�63(&�

&$//��,)&007��86,1*�5(7&2'(�

029(�=(526�72�9(+,&/(�5(&�

$''���72�9727�83'$7(6�

68%75$&7���)520�9(+,&/(�&2817�

68%5287,1(�72�83'$7(�727$/�35(0,80�5(/$7('�&/,(176�5(&25'

&/,(176�83'$7(�

&$//��,))7&+��86,1*�5(7&2'(�&/,(17�5(&�',5�&&851$0(�

&'7�63(&�

029(�727$/�35(0�$07�72�&/,(17�35(0,80�727$/�

&$//��,)83'7��86,1*�5(7&2'(�&/,(17�5(&�&&851$0(�&'$7$�63(&�

&$//��,)&007��86,1*�5(7&2'(�

029(�=(526�72�&/,(17�32/,&<�12�

029(�63$&(6�72�&/,(17�7<3(�

029(�=(526�72�&/,(17�35(0,80�727$/�

$''���72�&727�83'$7(6�

68%75$&7���)520�&/,(17�&2817�

68%5287,1(�72�(1'�7+(�352&(66,1*�/223

(1'�83'$7(6�

&$//��,)&&85��86,1*�5(7&2'(�&&85625�

&$//��,)5(/$��86,1*�5(7&2'(�

029(�����72�6(7�6:,7&+�

��72�+(5(�)25�(5525�571�$1'�(1'�-2%�571�

�

�

��

IFFWOL does not lock records

The IFFWOL (FIND WITHOUT LOCKS) function executes an IFFIND without
obtaining any record locks.
9-12 Model 204

The found set of records is indistinguishable from a list, except that the record
set is referenced with “IN label” syntax. Refer to the Model 204 Host Language
Interface Reference Manual for a detailed description of IFFWOL syntax.

Caution when using IFFWOL

You can use the IFFWOL function to solve specific performance problems.
However, use IFFWOL with caution to avoid logical inconsistencies.

When using IFFWOL, design your application to take into account the following
usage issues:

• The logical integrity of data is at risk when:

– Another user is in the middle of changing values that are related.

– Another user deletes or changes the field that caused the record to be
found.

• The thread that issues IFFWOL might encounter data that is temporarily
physically inconsistent. Because the thread does not hold any locks and
cannot prevent other threads from updating, updates can occur while the
IFFWOL thread is examining the record.

The following error conditions can occur when this happens:

– SICK RECORD messages are sent when extension records get
deleted. In this case, the record is not really sick; it just temporarily
appears that way to Model 204.

– NONEXISTENT RECORD messages are sent when entire records get
deleted.

When to use IFFWOL

An advantage to using IFFWOL over any of the other find functions (which lock
records) is that IFFWOL never fails. Examples of appropriate use of the
IFFWOL function include:

• When there is one user or thread at a time per record, for example, scratch
records or bank teller applications, where an account is usually modified by
one teller at a time.

• Report programs in a heavy update environment.

Examples of inappropriate uses of the IFFWOL function include:

• Report program in a heavy delete environment. In this case, IFFWOL
results in many NONEXISTENT RECORD messages.

• Retrievals in which the selection criteria can be changed by other users.

• Reuse record number (RRN) files, with the possible exception of scratch
files keyed on the user ID.
Host Language Interface Programming Guide 9-13

IFDSET locks a record set in EXC mode

The IFDSET (DELETE SET) function temporarily locks the set of records to be
deleted in EXC mode before deletion occurs. The locking does not succeed, if
any other user or thread has access to any of the records either in SHR or EXC
mode.

Note: Once a record has been deleted, the EXC lock on the record is released,
because the record no longer exists in the file.
9-14 Model 204

SHR lock on the current record

The following retrieval functions lock the current record in SHR mode:

HLI function Equivalent User Language command

IFFRN FOR RECORD NUMBER

IFOCC, IFCTO COUNT OCCURRENCES

IFGET GET

IFMORE MORE
Host Language Interface Programming Guide 9-15

EXC lock on the current record

Two of the HLI retrieval calls, IFGETX and IFMOREX, and all the file updating
calls enqueue in EXC mode and lock the current record with a SRE (single
record enqueue) lock. Model 204 applies the SRE lock regardless of whether
the record set is being held in SHR or EXC mode, or is unlocked.

Model 204 enqueues with the SRE lock on records from transaction backout
(TBO) and non-TBO files alike. For TBO files with the LPU option set,
Model 204 applies an additional EXC lock on updated records.

Single record enqueue (SRE) locks

The following retrieval calls lock the current record in EXC mode with a SRE
lock:

• IFGETX (GET EXCLUSIVE)

• IFMOREX (MORE EXCLUSIVE)

The following updating calls lock the current record in EXC mode with a SRE
lock before modifying the record:

• IFDALL (DELETE ALL)

• IFDREC (DELETE RECORD)

• IFDVAL (DELETE VALUE)

• IFPUT (PUT)

• IFUPDT (UPDATE)

The following calls, if successful, lock the newly created record in EXC mode
with an SRE lock:

• IFBREC (BEGIN RECORD)

• IFSTOR (STORE RECORD)

On a single cursor IFSTRT thread, Model 204 holds the SRE lock on the
current record until the HLI thread enqueues on another record.

On a multiple cursor IFSTRT thread, Model 204 holds the SRE lock on a
cursor’s current record until the HLI program issues a call to IFRELA or
IFCMTR to release locks, or until the cursor position is modified by one of the
following calls.

Call Function

IFFTCH Moves the cursor to the next logical record in the set.

IFFRN Points to specified a record number.
9-16 Model 204

Note: When using these functions inside a processing loop in the host
language program, the current record remains locked until it passes through
the loop unless it has been released (as described above) or deleted. If the
record has been deleted, the EXC lock on the record is released, because the
record no longer exists in the file.

Lock pending updates (LPU) locks

Model 204 provides a special file facility for TBO files called lock pending
updates (LPU), which prevents updated records in one transaction from being
used by other applications until the transaction ends.

When processing records from a TBO file with the LPU option set, the first
updating call locks the current record in EXC mode with an additional LPU lock
and adds the record to a set of updated locked records, called the pending
update pool.

The following updating calls lock the current record in a pending update pool
with the additional EXC lock:

• IFDALL

• IFDVAL

• IFDREC

• IFPUT

• IFSTOR

• IFUPDT

Model 204 locks the record in the pending update pool with the additional EXC
lock until the transaction is committed. The record is locked until the end of the
transaction when the entire pending update pool is released. See page 9-20 for
information about using IFCMMT to release LPU locks.

Note: Lock pending updates is an option of the FOPT parameter, which is
enabled or disabled on a file by file basis. Using files that have the LPU option
set ensures logical file consistency.

See page 9-9 for a description of IFFNDX locking behavior. Refer to the
Model 204 File Manager’s Guide and Model 204 Command Reference Manual
for more information about the FOPT parameter.

IFSTOR Changes the cursor position to the newly created record.

IFCCUR Closes the cursor.

Call Function
Host Language Interface Programming Guide 9-17

Record locking: sample processing loops

The following coding sequence shows HLI processing against a TBO file (the
LPU option is set). The program creates a found set with a SHR lock and
updates records.

The following coding sequence shows HLI processing against a TBO file (the
LPU option is set). The program creates a found set with an EXC lock and
updates records.

Call Locking behavior

1. IFFIND or IFFAC Enqueues SHR lock on found record set

2. Loop:

 IFFTCH

 IFUPDT

 End loop

Dequeues previous SRE lock (if any)

Enqueues current record with SRE lock (EXC-1)

Enqueues current record with LPU lock (EXC-2)

3. IFCMMT Releases all SRE and LPU locks (EXC-1, EXC-2 locks)

4. IFRELR Releases SHR lock on record set

Call Locking behavior

1. IFFNDX Enqueues EXC lock on found record set

2. Loop:

 IFFTCH

 IFUPDT

 End loop

Dequeues previous SRE lock (if any)

Enqueues current record with SRE lock (EXC-1)

Enqueues current record with LPU lock (EXC-2)

3. IFCMMT Releases all SRE and LPU locks (EXC-1, EXC-2 locks)

4. IFRELR Releases EXC lock on record set
9-18 Model 204

Releasing record locks

The following functions allow you to explicitly remove certain types of record
locks:

The types of record locks released by each function is described in the
following sections.

Refer to the Model 204 Host Language Interface Reference Manual for a
detailed description of the HLI functions and their syntax. Refer to Chapter 15
for more information about managing transactions.

IFRELA releases all locks

IFRELA (RELEASE ALL RECORDS) empties all record sets and terminates all
locks held by the thread. IFRELA also performs the following actions:

• Releases all SHR and EXC locks placed on records

• Clears all lists and the results of all IFSORT functions

• Sets the current record number to -1

Note: Use IFRELA with caution. After IFRELA is processed in a host language
program, no records are available for processing. Issue a call to IFRELA at the
end of a logical phase.

IFRELR releases a record set lock

IFRELR (RELEASE RECORDS) empties the records in a single found set and
terminates the lock on those records. You can use IFRELR to release the SHR
lock placed on records by IFFIND or IFFAC and the EXC lock placed on a
record set by IFFNDX.

You can also use IFRELR to release IFSORT records in the scratch file.

When IFRELR refers to an IFSORT sorted set, the CCATEMP space, which
was occupied by the temporary sorted record copies, is released.

Note: Sorted records released in this manner are no longer available to the
host language program. However, the original found set or list from which the
sorted set was built is not affected.

HLI function Equivalent User Language command

IFRELA RELEASE ALL RECORDS

IFRELR RELEASE RECORDS

IFCMMT COMMIT

IFCMTR COMMIT RELEASE
Host Language Interface Programming Guide 9-19

IFCMMT releases LPU locks

If the host language program is processing against a TBO file, IFCMMT
(COMMIT) releases the LPU exclusive lock on updated records. IFCMMT also
releases a single record enqueue (SRE) on the current record if one exists, for
example, as a result of a call to IFUPDT or IFPUT. IFCMMT ends the current
transaction and dequeues checkpoints.

When updating records, you can minimize record locking conflicts by issuing
frequent calls to IFCMMT.

A call to IFCMMT inside a loop that processes each record ends the current
update unit each time the loop is processed. This results in several short
update units instead of one long update unit and is especially useful for
minimizing conflicts on an LPU file where all updated records are enqueued in
EXC mode until the update unit ends. Record set locks obtained by IFFIND,
IFFAC, and IFFNDX are not affected by IFCMMT.

Example of using IFCMMT

The following COBOL example shows the call to IFCMMT issued inside a
record processing loop. The program finds and prints a count of all records
whose last name is NELSON. The MONTH field of each record in the found set
is changed to November (value is NOV).

In this example, the following conditions apply:

• IFSTRT starts a multiple cursor thread that allows updating

• IFOPEN uses a password that allows updating privileges

• IFUPDT enqueues the current record in EXC mode

• IFCMMT releases the LPU lock on the current record

:25.,1*�6725$*(�6(&7,21�

��&2817(56�

��),1'�7273,&������9$/8(�=(52�

��83'$7(�7273,&������9$/8(�=(52�

��&$//�$5*6�

��5(7&2'(3,&������&203�6<1&�

��',53,&���&203�6<1&�9$/8(�����

��),1'�&5,7(5,$�

��)'63(&3,&�;������9$/8(��/1$0(1(/621���

��&28173,&������&203�6<1&�

��)'/1$0(3,&�;����9$/8(��)'/1$0(���

��(1'�&$//3,&�;����9$/8(��(1'���

��&85625�3$506�

��&8563(&3,&�;�����9$/8(��,1�)'/1$0(���

��&851$0(�3,&�;����9$/8(��&5/1$0(���

��'7�63(&3,&�;�����9$/8(

�(',7�)1$0(�/1$0(�$''5(66�<($5�0217+�'$<�

�$�����$�����$�����$����$����$�������
9-20 Model 204

��:25.�5(&�

��),567�1$0(3,&�;�����

��/$67�1$0(3,&�;�����

��$''5(663,&�;�����

��'$7(�<($53,&�;����

��'$7(�0217+3,&�;����

��'$7(�'$<3,&�;����

��:25.�9$/�

��0217+�3,&�;����9$/8(��-$1��

�

�

�

��017+��3,&�;����9$/8(��129��

�

�

�

352&('85(�',9,6,21�

�

�

�

&$//��,)6757�����

&$//��,)23(1�����

�

�

�

),1'�$1'�&2817�5(&25'6�:+26(�/$67�1$0(�,6�1(/621�

&$//��,))$&��86,1*�5(7&2'(�)'63(&�&2817�)'/1$0(�(1'�&$//�

029(�&2817�72�),1'�727

',63/$<��727$/�5(&25'6�)281'�,6���),1'�727

,)�5(7&2'(�,6�127�(48$/�72�=(52�7+(1

*2�72�(1'�571

(/6(

83'$7(�1(/621�5(&25'6�

&$//��,)2&85��86,1*�5(7&2'(�&8563(&�&851$0(��

3(5)250�83'$7(�571�817,/�5(7&2'(�,6�127�(48$/�72�=(52�25

),1'�727�,6�(48$/�72�=(52

,)�5(7&2'(�,6�127�(48$/�72�=(52�7+(1

*2�72�(1'�571

(/6(

35,17�7+(�83'$7(�727$/�

&$//��,)&&85��86,1*�5(7&2'(�&851$0(

',63/$<��727$/�5(&25'6�83'$7('�,6���83'$7(�727�

*2�72�(1'�571�

68%5287,1(�72�&+$1*(�0217+�72�129�$1'�83'$7(�),/(�

&200,76�7+(�83'$7(�81,7

Host Language Interface Programming Guide 9-21

83'$7(�571�

&$//��,))7&+��86,1*�5(7&2'(�:25.�5(&�',5�&851$0(�'$7$�63(&�

029(�017+���72�'$7(�0217+�

&$//��,)83'7��86,1*�5(7&2'(�:25.�5(&�&851$0(�'$7$�63(&�

&$//��,)&007��86,1*�5(7&2'(�

$''���72�83'$7(�727�

68%75$&7���)520�),1'�727�

68%5287,1(�72�(1'�7+(�75$16$&7,21�

(1'�571�

,)�5(7&2'(�,6�(48$/�72�=(52�7+(1

1(;7�6(17(1&(

(/6(

3(5)250�(5525�571�

&$//��,)&/26(����

&$//��,))16+����

�

�

�

IFCMTR releases all locks and ends a transaction

The IFCMTR (COMMIT RELEASE) function performs all the operations of both
IFCMMT and IFRELA.

Note: After IFCMTR is processed, there is no current record. To avoid
confusing results, CCA recommends that you issue a call to IFCMTR at the end
of a logical processing step.
9-22 Model 204

Locking functions

Table 9-1 summarizes the following enqueuing and dequeuing actions for the
HLI functions that lock:

Files or groups
Record sets
Individual records
 Arbitrary resources

Codes used in the table

Table 9-1 use the following codes:

Code Meaning

Thread:

 mc

 st

Multiple cursor IFSTRT thread

Single cursor IFSTRT thread

Action:

 ENQ

 DEQ

Enqueues resource

Dequeues resource

Note: Some HLI functions enqueue or dequeue only, while
others first dequeue and then enqueue. Those functions
that perform both operations in this manner only when used
on a single cursor IFSTRT thread. On a multiple cursor
IFSTRT thread, except for IFFRN, an HLI function either
enqueues or dequeues.

Mode:

 SHR

 EXC

Shares lock on resource

Exclusive lock on resource (for individual records, SRE or
LPU lock
Host Language Interface Programming Guide 9-23

Times:

 n

 0

User-specified number of times to try enqueuing

No wait

Note: Except for IFOPENX and IFENQ, which is wait time
in seconds, Times is the number of times to attempt
enqueuing on the resource before returning a completion
code (RETCODE) of 3 to the HLI application. If times is
greater than zero, Model 204 waits for three seconds (or 10
seconds for IFOPEN) before the next attempt.

The total number of times to try equates to a total wait time
in seconds, where:

IFOPEN total wait time is the total number of tries multiplied
by 10 seconds.

For all other calls that specify a wait time except IFOPEN:
total wait time is the total number of tries multiplied by 3
seconds.

Code Meaning

Table 9-1. HLI locking functions

HLI function Thread Action Mode Times Resource

Locking files or groups

IFCLOSE mc, st DEQ — 0 All previously enqueued:
• Records

• Record sets and lists

• Files

IFDELF mc, st ENQ EXC 0 Specified file

IFDFLD mc, st ENQ EXC 0 Specified file

IFNFLD mc, st ENQ EXC 0 Specified file

IFRFLD mc, st ENQ EXC 0 Specified file

IFOPEN st

mc, st

1. DEQ

2. ENQ

—

SHR

0

2

All previously enqueued:

• Records

• Record sets and lists

Specified file or group

Note: The wait time is 10 seconds
each time.
9-24 Model 204

IFOPENX st

mc, st

1. DEQ

2. ENQ

—

EXC

0

n

All previously enqueued:

• Records

• Record sets and lists

Specified file or files

Note: n is a user-specified wait time
in seconds.

Locking record sets

IFBOUT mc, st DEQ — 0 • LPU locks

• SRE exclusive locks

IFCMMT mc, st DEQ — 0 • LPU locks

• SRE exclusive locks

IFCMTR mc, st DEQ — 0 • Records held in EXC lock,
previously updated

• Record sets and lists, previously
enqueued (EXC or SHR)

IFDEQL st DEQ — 0 Record set on a specified list,
previously enqueued

IFDSET mc, st ENQ EXC 0 Record set

IFENQL st ENQ SHR/EX
C

n Record set on a specified list

IFFAC
IFFACE

mc, st ENQ SHR 0 New record set

IFFIND
IFFINDE

st

mc, st

1. DEQ

2. ENQ

—

SHR

0

0

Previously enqueued:

• Record

• Record set

New record set

IFFNDX
IFFNDXE

st DEQ — 0 Previously enqueued:
• Record

• Record set

IFRELA mc DEQ — 0 All record sets and lists previously
enqueued (SHR or EXC)

IFRELR mc DEQ — 0 Specified record set or list,
previously enqueued

IFSKEY
IFSKYE

st DEQ — 0 Previously enqueued:

• Record

• Record set

Table 9-1. HLI locking functions (Continued)

HLI function Thread Action Mode Times Resource
Host Language Interface Programming Guide 9-25

IFSORT
IFSRTE

st DEQ — 0 Previously enqueued:

• Record

• Record set

Locking individual records

IFBREC st 1. DEQ

2. ENQ

—

EXC

0

0

Record previously enqueued

New record

IFCCUR mc DEQ — 0 Record previously enqueued

IFCTO
IFCTOE

st 1. DEQ

2. ENQ

—

SHR

0

0

Record previously enqueued

Current record

IFDALL st

mc, st

1. DEQ

2. ENQ

3. ENQ

—

EXC

EXC

0

10

0

Record previously enqueued

Current record (SRE lock)

Current record in LPU pending
update pool

IFDREC st

mc, st

1. DEQ

2. ENQ

3. ENQ

—

EXC

EXC

0

10

0

Record previously enqueued

Current record (SRE lock)

Current record in LPU pending
update pool

IFDVAL st

mc, st

1. DEQ

2. ENQ

3. ENQ

—

EXC

EXC

0

10

0

Record previously enqueued

Current record (SRE lock)

Current record in LPU pending
update pool

IFFRN
IFFRNE

mc 1. DEQ

2. ENQ

—

SHR

0

0

Record previously enqueued

Current record

IFFTCH
IFFTCHE

mc DEQ — 0 Record previously enqueued

IFGET
IFGETE

st 1. DEQ

2. ENQ

—

SHR

0

0

Record previously enqueued

Next logical record

IFGETX
IFGETXE

st 1. DEQ

2. ENQ

—

EXC

0

n

Record previously enqueued

Next logical record

IFMORE
IFMOREE

st 1. DEQ

2. ENQ

—

SHR

0

0

Record previously enqueued

Current record

IFMOREX
IFMORXE

st 1. DEQ

2. ENQ

—

EXC

0

n

Record previously enqueued

Current record

IFOCC
IFOCCE

mc ENQ SHR 0 Current record

Table 9-1. HLI locking functions (Continued)

HLI function Thread Action Mode Times Resource
9-26 Model 204

IFPUT
IFPUTE

st 1. DEQ

2. ENQ

3. ENQ

—

EXC

EXC

0

10

0

Record previously enqueued

Current record (SRE lock)

Current record in LPU pending
update pool

IFSTOR mc 1. DEQ

2. ENQ

3. ENQ

—

EXC

EXC

0

0

0

Record previously enqueued

New record (SRE lock)

New record in LPU pending update
pool

IFUPDT
IFUPDTE

mc 1. DEQ

2. ENQ

EXC

EXC

10

0

Current record (SRE lock)

Current record in LPU pending
update pool

Locking arbitrary resources

IFDEQ mc, st DEQ — 0 Resource previously enqueued by
IFENQ

IFENQ mc, st 1. DEQ

2. ENQ

—

SHR/EX
C

0

n

User-specified source

Note: n is a user-specified wait time
in seconds.

Table 9-1. HLI locking functions (Continued)

HLI function Thread Action Mode Times Resource
Host Language Interface Programming Guide 9-27

9-28 Model 204

d

10
Record Locking Conflicts

In this chapter

• Overview

• When a record locking conflict occurs

• Example of record locking conflict

• Handling record locking conflicts

• Controlling record locking conflicts
Host Language Interface Programming Guide 10-1

Overview

This chapter describes for the HLI programmer a typical locking conflict and
provides an example of how to handle conflicts in a host language application.
Refer to the guidelines for avoiding conflicts when you are coding your host
language program.

For more information

Refer to Chapter 9 for a description of enqueuing and information about the
locking behavior of individual HLI calls.
10-2 Model 204

When a record locking conflict occurs

If Model 204 cannot lock a record, a locking conflict occurs. Record locking
conflicts can occur when multiple users try concurrently to access the same
records and attempt overlapping updating operations.

A conflict arises when one or more users are reading a file (in SHR mode) and
another user attempts to update the file (enqueuing in EXC mode) or when two
or more users attempt to perform file maintenance (each requiring EXC mode
access) on the same records retrieved from a file.

For update operations from a host language application, locking guarantees an
HLI thread exclusive control of a resource until the thread completes update
processing on the resource. Conflicting requests are automatically delayed
until exclusive control is released.

Model 204 locks at different levels

Model 204 resolves internal enqueuing conflicts by locking at the following
levels:

• Files or groups

• Sets of records

• Single records

• Arbitrary resources

For more information about record locking, refer to Chapter 9.
Host Language Interface Programming Guide 10-3

Example of record locking conflict

In this example, a User Language request and an IFAM2 host language
application attempt to access the same Model 204 record at the same time.
Because the IFAM2 application requires an exclusive (EXC) lock, this situation
causes a record locking conflict.

IFAM2 application requires an EXEC lock

Events occur in the following order:

1. The User Language request begins processing and finds all the records in
the CARS file that were made in 1991 and starts to print a report. (The pro-
cedure enqueues the found records in SHR mode.)

2. Then the host language application begins processing and finds all the
FORD records in the CARS file, including some of the 1991 records
selected by the User Language request. The application then attempts an
updating function that requires an EXC lock as it processes each record.
However, the program cannot gain EXC access to any of the 1991
records.

Figure 10-Figure 10-1. illustrates the record locking conflict involving the User
Language procedure and the host language application.

Figure 10-1. Example of record locking conflict

 MAKE MODEL YEAR COLOR
 =FORD =ESC =1991 =BLUE

CARS

Model 204
Online

(one user
 is active)

IFAM2 job
(single thread)

Model 204 data file

SHR
lock

EXC
 enqueue

HLI
batch

application
(finds and
updates)

 User Language
request

(finds and
prints) CARS record
10-4 Model 204

User Language request opens CARS with read-only privileges

The User Language request begins processing first and opens the CARS file
with read-only privileges (password is READS), selects the FORD records, and
prints the information found in each record.

The User Language request includes the following statements:

23(1�&$56

5($'6�

%(*,1

��)'�0$.()25'

�<($5 ����

��)5��

35,17�$//�,1)250$7,21

(1'

&/26(�&$56

Note: The records in the found set remain locked in SHR mode while they are
being printed by the for loop.

IFAM2 application attempts to update CARS

The HLI IFAM2 batch application begins processing next and starts a multiple
cursor IFSTRT thread, which allows update processing. The program opens
the CARS file with update privileges (password is UPDATES) and selects the
FORD records (using IFFAC).

The host language application starts a processing loop that performs the
following functions:

• Fetches (IFFTCH) each record in the found set.

• Calls IFUPDT to update the record, changing the COLOR field to TAN.

• Writes an output record to a user-specified report file.

• Displays record counts.

However, as soon as the host language program attempts to perform the
updating function on the first 1991 record in the found set, it enqueues on the
record in EXC mode, as shown in Figure 10-1 on page 10-4. Model 204 returns
a completion code (RETCODE) of 3, which indicates that the required EXC lock
on the record could not be obtained.

The excerpts from a COBOL host language program, in the section “Sample
host language error processing” on page 10-7, updates the FORD records.

Resolution of the locking conflict

The host language application shown in Figure 10-Figure 10-1. cannot access
the 1991 records (which are locked in SHR mode by the User Language
Host Language Interface Programming Guide 10-5

procedure) until the User Language request finishes processing or explicitly
releases the records.

When the SHR lock has been released, the host language application can
access the record in EXC mode and update records with IFUPDT.
10-6 Model 204

Handling record locking conflicts

Specifying an action when a record locking conflict occurs

Model 204 allows the user to specify the action to be taken if, after an initial
record locking attempt and subsequent wait, an effort to lock a set of records is
still unsuccessful.

In User Language, two special forms of ON units, the ON RECORD LOCKING
CONFLICT and ON FIND CONFLICT, can be invoked to specify the action to
be taken for a record locking conflict. A User Language PAUSE statement can
be used to cause the request to wait a specified time and then to retry the
statement that caused the evaluation of the ON unit.

In your host language program, you can use the IFERLC call to help determine
the cause of the record locking conflict and to specify an action to be taken.

Sample host language error processing

The following COBOL program excerpts show error processing in a host
language program using an ERROR-RTN subroutine.

The program tests the Model 204 completion return code (RETCODE) after
each HLI call. In this example, if the return code is not equal to zero, the
program transfers control to ERROR-RTN and stops processing.

For a return code of 3, the program displays a record locking conflict message.
For all nonzero return codes, the program displays an error message with the
name of the HLI function call and the return code value. The error routine also
calls IFGERR and displays the text of the Model 204 error message.

'7�',9,6,21�

),/(�6(&7,21�

)'83'$7(�5(3257

/$%(/�5(&25'6�$5(�67$1'$5'

%/2&.�&217$,16���5(&25'6

'7�5(&25'�,6�&$5�5(&�287�

��&$5�5(&�287�

��&$5�0$.(�2873,&�;����

��),//(53,&�;�����

��&$5�02'(/�2873,&�;����

��),//(53,&�;�����

��&$5�<($5�2873,&�;����

��),//(53,&�;�����

��&$5�&2/25�2873,&�;����

:25.,1*�6725$*(�6(&7,21�

��0����&$//�$5*6�

��5(7&2'(3,&������&203�6<1&�

��',53,&������&203�6<1&�9$/8(�����

��0����(5525�

��0����&$//�(55253,&�;����9$/8(�63$&(6�

��0����5(7&2'(�(55253,&������9$/8(�=(52�
Host Language Interface Programming Guide 10-7

��0����06*�(55253,&�;�����9$/8(�63$&(6��

��:.�9$56�

��:.�&2/253,&�;����9$/8(��7$1��

��),1'�7273,&������9$/8(�=(52�

��83'$7(�7273,&������9$/8(�=(52�

��67$57�7+5($'�

��/$1*�,1'3,&������&203�6<1&�

��/2*,13,&�;�����9$/8(��&$5686(5�83'$7(6���

��7+5'�7<3(3,&������9$/8(�����&203�6<1&�

��7+5'�123,&������&203�6<1&�

��),/(�,1)2�

��),/(�1$0(3,&�;�����9$/8(��&$56���

��3$66:25'3,&�;����9$/8(��83'$7(6���

��),1'�63(&�

��)'63(&3,&�;�����9$/8(��0$.()25'���

��&28173,&������&203�6<1&�

��)'1$0(3,&�;����9$/8(��)'1$0(���

��(1'�&$//3,&�;����9$/8(��(1'���

��&85625�3$506�

��&8563(&3,&�;�����9$/8(��,1�)'1$0(���

��&851$0(3,&�;����9$/8(��&51$0(���

��:25.�5(&�

��0$.(3,&�;����9$/8(�63$&(6�

��02'(/3,&�;����9$/8(�63$&(6�

��<($53,&�;����9$/8(�63$&(6�

��&2/253,&�;����9$/8(�63$&(6�

��&$//�$5*6�

��5(7&2'(3,&������&203�6<1&�

��5(&1803,&�;�����

��86(51803,&�;����

��),/(1$0(3,&�;����

��'7�63(&3,&�;�����9$/8(

�(',7�0$.(�02'(/�<($5�&2/25��$����$����$����$�������

�

�

�

352&('85(�',9,6,21�

�

�

�

67$57�$�08/7,3/(�&85625�7+5($'

&$//��,)6757��86,1*�5(7&2'(�67$57�7+5($'�

,)�5(7&2'(�,6�127�(48$/�72�=(52�7+(1

029(��,)6757����72�0����&$//�(5525

*2�72�(5525�571�

23(1�&$56�:,7+�83'$7(�35,9,/(*(6

&$//��,)23(1��86,1*�5(7&2'(�),/(�,1)2�

,)�5(7&2'(�,6�127�(48$/�72�=(52�7+(1

029(��,)23(1����72�0����&$//�(5525

*2�72�(5525�571�

10-8 Model 204

),1'�$1'�&2817�)25'�5(&25'6

&$//��,))$&��86,1*�5(7&2'(�)'63(&�&2817�)'1$0(�(1'�&$//�

,)�5(7&2'(�,6�127�(48$/�72�=(52�7+(1

029(��,))$&�����72�0����&$//�(5525

*2�72�(5525�571

(/6(

83'$7(�$1'�:5,7(�)25'�5(&25'6

029(�&2817�72�),1'�727

',63/$<��727$/�5(&25'6�)281'�,6���),1'�727

&$//��,)2&85��86,1*�5(7&2'(�&8563(&�&851$0(

029(��,)2&85����72�0����&$//�(5525

3(5)250�83'$7(�$1'�:5,7(�817,/�

5(7&2'(�,6�127�(48$/�72�=(52�25

),1'�727�,6�(48$/�72�=(52�

,)�5(7&2'(�,6�127�(48$/�72�=(52�7+(1

*2�72�(5525�571

(/6(

35,17�83'$7(�727$/

',63/$<��727$/�5(&25'�83'$7('�,6���83'$7(�727

&$//��,)&&85��86,1*�5(7&2'(�&851$0(

,)�5(7&2'(�,6�127�(48$/�72�=(52�7+(1

029(��,)&&85����72�0����&$//�(5525

*2�72�(5525�571�

*2�72�(1'�571�

68%5287,1(�72�352&(66�)25'�5(&25'6

83'$7(�$1'�:5,7(�

029(��,))7&+����72�0����&$//�(5525�

&$//��,))7&+��86,1*�5(7&2'(�:25.�5(&�',5�&851$0(�'$7$�63(&�

3(5)250�83'$7(�&2/25�

3(5)250�:5,7(�5(&�

029(�63$&(6�72�:25.�5(&�

68%75$&7���)520�),1'�727�

68%5287,1(�72�&+$1*(�&2/25�72�7$1�$1'�83'$7(�),/(

83'$7(�&2/25�

029(�:.�&2/25�72�&2/25�

029(��,)83'7����72�0����&$//�(5525�

&$//��,)83'7��86,1*�5(7&2'(�:25.�5(&�&851$0(�'$7$�63(&�

,)�5(7&2'(�,6�(48$/�72���7+(1�*2�72�(5525�571�

029(��,)&007����72�0����&$//�(5525�

&$//��,)&007��86,1*�5(7&2'(�

$''���72�83'$7(�727�
Host Language Interface Programming Guide 10-9

68%5287,1(�72�:5,7(�$�5(3257�5(&25'

:5,7(�5(&�

029(�0$.(�72�&$5�0$.(�287�

029(�02'(/�72�&$5�02'(/�287�

029(�<($5�72�&$5�<($5�287�

029(�&2/25�72�&$5�&2/25�287�

:5,7(�&$5�5(&�287�

68%5287,1(�72�',63/$<�+/,�&$//�(55256�

(5525�571�

,)�5(7&2'(�,6�(48$/�72���7+(1

',63/$<��5(&25'�/2&.,1*�&21)/,&7��

&$//��,)(5/&��86,1*�5(7&2'(��5(&180��86(5180��),/(1$0(

�5(&25'�180%(5� ���5(&180

�86(5�180%(5��� ���86(5180

�,1�),/(�����������),/(1$0(�

029(�5(7&2'(�72�0����5(7&2'(�(5525�

',63/$<��&5,7,&$/�(5525���8168&&(66)8/�+/,�)81&7,21�&$//���

���0����&$//�(5525����:,7+�$�5(7&2'(�2)����

���0����5(7&2'(�(5525�

&$//��,)*(55��86,1*�5(7&2'(��0����06*�(5525�

',63/$<��02'(/�����(5525�0(66$*(����0����06*�(5525�

*2�72�(1'�571�

68%5287,1(�72�(1'�7+(�75$16$&7,21

(1'�571�

&$//��,)&/26(��86,1*�5(7&2'(�

&$//��,))16+��86,1*�5(7&2'(�

�

�

�

6723�581�
10-10 Model 204

Controlling record locking conflicts

Releasing records

Use the following guidelines for releasing records:

• Release records as soon as you no longer need them. Use IFRELR to
release records, including those on a list. (To free pages in CCATEMP, use
IFCLST when you no longer need the records in a list.)

• Place the records you need on a list, release the records, and process from
the list in situations where no updates are taking place or where updates
are known not to affect the data in question.

Processing update units

Use the following guidelines for processing update units:

• Use IFCMMT at the end of logical updates and keep logical updates short.

• If using HLI from an Online monitor, such as CICS, try to keep update units
within the same terminal I/O point.

Changes to the database

Use the following guidelines for applications that make changes to the
database:

• In an application that reads and updates, segregate updating functions
from read-only functions.

• Perform the following functions during off-peak hours: IFRFLD, IFNFLD,
and IFDFLD.

• Defer index updates whenever possible. Because exclusive locks are not
held as long, deferring index updates speeds updating. Only a part of the
work is being done while the lock is held. For more information about index
updates, refer to the Model 204 File Manager’s Guide.
Host Language Interface Programming Guide 10-11

10-12 Model 204

11
Model 204 Security

In this chapter

• Overview

• Using Model 204 security
Host Language Interface Programming Guide 11-1

Overview

This chapter briefly describes Model 204 security for application programmers
who are using the Host Language Interface facility.

For more information

Refer to the Model 204 System Manager’s Guide and Model 204 Security
Interfaces Manual for more information about Model 204 security.
11-2 Model 204

Using Model 204 security

Model 204 provides a variety of security features that prevent unauthorized use
of IDs, files, groups, records, and fields. When a particular security feature is
operational, the corresponding access restrictions apply.

Login security

Login security requires you to enter a password when logging in. Only a valid
password can gain access to the system. After successfully logging in, you are
granted particular privileges.

When login security is in effect, specify login information using the following HLI
calls:

• For an IFSTRT thread in IFAM1, use the IFLOG call to provide login
information, as necessary, where the user authorization is to be validated
by a security interface.

• In IFAM2 and IFAM4, specify the login parameter in the IFSTRT call to
supply the user ID and password that permit entry to the system.

• For an IFDIAL thread, supply the login information, as necessary, using the
IFWRITE call.

File security

File security requires you to specify a legal password in the IFOPEN call. After
you successfully open the file, Model 204 grants you particular file privileges, a
user class number, and field security levels.

Group security

Group security requires you to specify a legal password in the IFOPEN for the
file group.

Record security

Record security limits access to records by allowing you to retrieve and update
only records that you have stored in the file or that users can share.

Field-level security

Field-level security protects fields in a file. Field access levels are assigned
when you open a file or group. Specify the security level associated with a field
in the IFDFLD call.
Host Language Interface Programming Guide 11-3

Terminal security

Terminal security allows particular login user IDs and particular files and file
groups to be accessed only from specific Model 204 threads.
11-4 Model 204

Part III
Job-Related HLI
Processing
Requirements

This part gives details about the components of HLI jobs. It ex-
pands on information about HLI jobs presented in the
Model 204 Host Language Interface Reference Manual.

12
Tables

In this chapter

• Overview

• User work area

• Managing table sizes

• File group table (FTBL)

• Names table (NTBL)

• Internal statements/quad table (QTBL)

• Character string table (STBL)

• Temporary work table (TTBL)

• Compiler variable table (VTBL)
Host Language Interface Programming Guide 12-1

Overview

This chapter describes Model 204 tables, which comprise the user work area,
for application programmers who are using the Host Language Interface
facility. Use the information in this chapter to avoid or correct table full
conditions that occur during program execution.

Refer to the descriptions of table entries for multiple cursor IFSTRT thread calls
if you are using multiple cursor functionality in your HLI application for the first
time.

For more information

Refer to the Model 204 User Language Manual for complete information about
user work areas.

Refer to the Model 204 Host Language Interface Reference Manual for a
description of individual HLI calls.
12-2 Model 204

User work area

Model 204 allocates an internal work area for each IFSTRT and IFDIAL thread
to store the information necessary to evaluate a call or to run a request.

Each work area is composed of a set of tables. The internal work areas for
IFSTRT and IFDIAL threads include the following Model 204 tables:

• FTBL, for file groups

• NTBL, for names of cursors, lists, %variables, compilations

• QTBL, for quadruples, that is, statements in internal form

• STBL, for character strings

• TTBL, for temporary work pages

• VTBL, for compiler variables

In IFAM2 and IFAM4, the CCASERVR dataset stores a user’s work area,
including these tables, when the user is swapped out of memory. Refer to
Chapter 6 for information about CCASERVR.

The next two sections give information about specifying the size of these tables
and avoiding table full conditions. The sections that follow describe each of the
user work tables for HLI processing.

Refer to the Model 204 User Language Manual for more information about user
work areas.
Host Language Interface Programming Guide 12-3

Managing table sizes

Specifying user table size

You can specify the size of a user work area table by setting the corresponding
user table parameter in any user parameter line in an IFAM1 or IFAM4 job. In
an IFAM2 or IFAM4 job, you can reset a user table parameter by using the
IFUTBL call.

The following user table parameters correspond to the user tables:

Refer to the Model 204 Host Language Interface Reference Manual for
information about IFAM1, IFAM2, and IFAM4 jobs and for a description of the
IFUTBL call.

Note: In IFAM1, IFAM2, and IFAM4, the Model 204 server area must be large
enough to accommodate the aggregate work area table size for HLI threads in
the job.

If you override the default server area that is allocated by specifying the
SERVSIZE User 0 parameter, calculate a value using the appropriate
SERVSIZE formula that includes the sum of the user table sizes.

Refer to the Model 204 System Manager’s Guide for more information about
server areas, SERVSIZE, and user work area table parameters. Refer to the
Model 204 Command Reference Manual for more information about UTABLE
parameters.

Avoiding table full conditions

Model 204 keeps user work area table entries for precompiled specifications
and %variables for use by later calls. On a multiple cursor IFSTRT thread,
Model 204 also stores compilations and retains multiple record sets.

On each thread, Model 204 clears table entries for noncompiled HLI calls after
processing each call. It is unlikely that noncompiled calls would generate
enough table entries to cause table full conditions.

Parameter Table Specifies... Default value Maximum

LFTBL FTBL Length in bytes 1000 bytes 65528 bytes

LNTBL NTBL Number of entries 50 entries 5460 entries

LQTBL QTBL Number of entries 400 entries 16383 entries

LSTBL STBL Length in bytes 600 bytes 16 megabytes

LTTBL TTBL Number of entries 50 entries 8190 entries

LVTBL VTBL Number of entries 50 entries 524287 entries
12-4 Model 204

However, you might encounter a table full condition for a noncompiled call
when the table is already full of entries for calls issued by the thread. If a table
is full, Model 204 returns a completion code of 7 to the HLI program.

To avoid table full conditions, when a compilation is no longer needed, delete it
with a call to IFFLUSH. Refer to the Model 204 Host Language Interface
Reference Manual for a description of the IFFLUSH call.
Host Language Interface Programming Guide 12-5

File group table (FTBL)

Model 204 stores data structures related to file groups, as opposed to single
files, in FTBL. There are two types of FTBL entries. Model 204 allocates an
entry under each of the following conditions:

• Each time a group is opened.

This type of entry has a fixed-size portion of 56 bytes, plus 2 bytes per file
in the group definition. Model 204 releases this entry when the group is
closed.

• For collecting field name codes and properties, each time a new field name
is encountered in a HLI call.

The entry size is variable, consisting of 9 fixed bytes, plus a number of bytes
equal to the length of the field name plus 11 bytes for each file in the group.
Model 204 does not delete this entry until the group is closed or until
IFFNSH is executed.

In addition to the space required by these two types of entries, Model 204
allocates a fixed amount of space in FTBL equal to 2 bytes times the value of
the NGROUP runtime parameter.
12-6 Model 204

Names table (NTBL)

Model 204 creates one entry for each cursor, list name, %variable, or
compilation name. On a single cursor IFSTRT thread, the first IFFDV call also
generates an entry, and Model 204 saves entries until a new file or group is
opened or until the thread is deleted.

NTBL entries are 12 bytes long.

Note: You can explicitly delete compilation names and %variables with the
IFFLUSH call.
Host Language Interface Programming Guide 12-7

Internal statements/quad table (QTBL)

Quadruples are the internal version of many HLI calls. The Host Language
Interface evaluates some calls directly. Others, like IFFIND, IFCOUNT, and list
manipulations, build quadruples (quads) so that the User Language evaluator
routines can be used.

QTBL entries range from 4 to 40 bytes in length. The following sections
describe QTBL entries.

QTBL requirements for search functions

The following HLI calls, which perform find functions, use space in QTBL:

• Each IFCTO generates 8 bytes of control information. Additionally, each
field name takes 16 bytes.

• IFFIND generates 20 bytes of control information.

For information about additional QTBL bytes used by IFFIND, refer to the
Model 204 User Language Manual QTBL storage requirements for FIND.

• IFFAC uses the same amount as IFFIND plus an additional 40 bytes.

• IFFDV generates 20 bytes of control information. Additional bytes are
generated depending on the type of field used in IFFDV, as follows:

– For an FRV field, an additional 76 bytes are generated for single files
and 96 bytes for a group.

– For an ORDERED field, an additional 32 bytes are generated.

For information about additional QTBL bytes used by IFFDV, refer to the
Model 204 User Language Manual QTBL storage requirements for
FIND ALL VALUES.

QTBL requirements for retrieval and update functions

The following HLI calls, which perform get and store functions, use space in
QTBL:

• Each IFGET compilation generates 12 bytes of control information.
Additionally, each field name takes 16 bytes.

Additional bytes in QTBL are used by IFFTCH, IFUPDT, IFGET, and IFPUT
as necessary based on the following storage requirements:

– If a field name list is specified, each field name or field name variable in
the list takes 8 bytes.

– If an EDIT specification exists, each EDIT item takes approximately 3
bytes.

– Iteration factors take 4 bytes each.

– If a secondary field name list is specified with EDIT, the list uses 4 extra
12-8 Model 204

bytes plus the space taken for the fields and extra format items.

• An IFGETV compilation requires 12 bytes. Additionally, if an EDIT
specification exists, each EDIT item takes approximately 3 bytes.

• IFSTOR takes the same amount as IFGET, plus an additional 20 bytes.

QTBL requirements for %variables

HLI calls, which assign %variables in specifications, use space in QTBL.
%Variable assignment specifications use the same amount of space as IFGET
specifications. Model 204 deletes a %variable specification as soon as the
assignment is completed.

QTBL requirements for sort functions

The following HLI calls, which perform sort functions, use space in QTBL:

• Each IFSORT compilation uses 72 bytes.

• Each IFSRTV compilation uses 76 bytes.

QTBL requirements for cursor functions

The following HLI calls, which perform cursor functions, use space in QTBL:

• Each IFOCUR compilation uses 20 bytes.

• IFFRN uses 8 bytes.
Host Language Interface Programming Guide 12-9

Character string table (STBL)

Model 204 stores all character strings in STBL. Each stored string is preceded
by a field that is 1 byte in length.

STBL entries are as follows:

• IFDVAL and IFFILE use STBL to store the value string from the input
parameter.

• Any values specified for IFFIND are stored in STBL.

• The EDIT form of IFPUT or of a %variable assignment uses STBL for each
value, reusing the space from previous values.

• Each %variable uses enough space to hold its current value, plus 1 byte. If
the length of the value changes, the amount of STBL space changes
accordingly.

• When an IFOCUR that specifies an IN ORDER BY [ordered field] clause is
executed, Model 204 allocates 256 bytes of STBL space. Model 204 frees
the STBL space when the cursor is closed.

Additionally, if LIKE is specified on the IN ORDER clause, Model 204
allocates storage for the pattern terms. This amount depends on the length
and format of the pattern string and cannot exceed 255 bytes.
12-10 Model 204

Temporary work table (TTBL)

IFFIND uses TTBL entries to keep track of temporary storage. The number of
TTBL entries required depends on the complexity of the selection criteria.
Model 204 deletes TTBL entries as soon as the IFFIND has been executed.

TTBL entries are 4 bytes each.
Host Language Interface Programming Guide 12-11

Compiler variable table (VTBL)

Entries in VTBL are variable, with most ranging from 8 to 20 bytes.

Note: In addition to the requirements described in the following sections, the
Host Language Interface uses some additional VTBL entries for temporary
work space.

VTBL requirements for search functions

The following HLI calls, which perform search functions, use space in VTBL:

• IFCOUNT allocates one 8-byte entry.

• On a single cursor IFSTRT thread, each IFFIND allocates one basic entry,
either 8 bytes for a single file or (8 + 8*number-of-files) bytes for a group.
On a multiple cursor IFSTRT thread, each compiled IFFIND generates one
basic entry for a single file or group.

In addition to the basic entry, IFFIND allocates additional bytes in VTBL as
listed below. Model 204 releases all but the basic entry after evaluating the
IFFIND call.

– IFFIND allocates at least two 20-byte entries for scratch purposes, and
more for complex Boolean criteria. Also, one entry is allocated for each
field name = value pair referenced.

– The length of a field name = value entry is at least 20 bytes and is
greater for large files.

– IFFIND generates one 8-byte entry in VTBL if any direct search condi-
tion is specified in the IFFIND, and allocates one 28-byte entry for each
such direct search condition.

For information about additional VTBL bytes used by IFFIND, refer to the
Model 204 User Language Manual VTBL storage requirements for FIND.

• On a single cursor IFSTRT thread, each IFFDV allocates one basic entry,
either 20 bytes for a single file or (12 + 8 + 8*number-of-files) bytes for a
group. On a multiple cursor IFSTRT thread, each compiled IFFDV
generates one basic entry for a single file or group.

In addition to the basic entry, IFFDV allocates additional bytes in VTBL as
listed below. Model 204 releases all but the basic entry after evaluating the
IFFDV call.

– IFFDV allocates two 20-byte entries for scratch purposes, and another
64 bytes for a group.

– If an IFFDV call containing the FROM/TO option is used with an FRV
field, IFFDV allocates one 44-byte entry. With ORDERED fields, IFFDV
allocates two 44-byte entries.
12-12 Model 204

VTBL requirements for retrieval functions

IFGET allocates no VTBL entry unless it specifies the IN ORDER clause, which
uses 168 bytes.

VTBL requirements for sort functions

The following HLI calls, which perform sort functions, use space in VTBL:

• Each IFSORT compilation uses 76 bytes in VTBL.

• Each IFSRTV compilation uses 80 bytes in VTBL.

• Each IFFRN uses 32 bytes.

• Each IFSTOR uses 32 bytes.

VTBL requirements for cursor functions

The following HLI calls, which perform search functions, use space in VTBL:

• IFOCUR usage depends on the type of record set that the cursor compiles
against and on the ordering criteria specified, as follows:

– If the record set is unordered and no IN ORDER clause is specified,
IFOCUR uses 36 bytes.

– If the record set is unordered and sorted file ordering is specified, IFO-
CUR uses 100 bytes.

– If the record set is unordered and Btree ordering is specified, IFOCUR
uses 252 bytes.

– If the record set is a sorted set, IFOCUR uses 40 bytes.

VTBL requirements for lists and %variables

HLI calls that specify lists and %variables use space in VTBL as follows:

• Each list allocates an entry, either 8 bytes for a single file or (8+8*number-
of-files) bytes for a group.

• Each %variable allocates one 28-byte entry.
Host Language Interface Programming Guide 12-13

12-14 Model 204

13
CCA Datasets in HLI Jobs

In this chapter

• Overview

• CCA datasets for IFAM1 and IFAM4 jobs

• CCAPRINT file

• CCATEMP file

• CCASERVR file

• CCASNAP file

• CCASTAT file

• CCAGRP file

• CCAJRNL and CCAAUDIT files

• CHKPOINT file
Host Language Interface Programming Guide 13-1

Overview

This chapter describes the CCA datasets used in an IFAM1 or IFAM4 HLI job
for application programmers who are using the Host Language Interface
facility.

For more information

Refer to the Model 204 Host Language Interface Reference Manual for a
description of IFAM1 and IFAM4 jobs.
13-2 Model 204

CCA datasets for IFAM1 and IFAM4 jobs

Required datasets

The following standard CCA datasets are required in IFAM1 and IFAM4 job
runs. Model 204 requires each of these datasets for a particular function.

Note: For IFAM2, these datasets are included in the Model 204 Online job.

Datasets required for a particular Model 204 facility

Except for CCAAUDIT which is optional, Model 204 requires that you specify
the following datasets when using the particular facility:

Specifying a CCA dataset

To specify a particular CCA dataset, include a job control statement that
references the dataset in the job setup. Refer to the Model 204 Host Language
Interface Reference Manual for detailed information about IFAM1 and IFAM4
jobs.

The following sections describe each of the CCA datasets used in HLI jobs.

CCA dataset Function

CCAPRINT Prints the contents of CCAIN

CCASERVR Holds user work area for server swapping (IFAM4 only)

CCASNAP Stores a snap dump used for error diagnostics

CCATEMP Writes a scratch file used for temporary storage

Dataset Function Required for...

CCAAUDIT Audit log Optional for recovery

CCAGRP Group definitions Permanent file groups

CCAJRN Journal log Recovery

CHKPOINT Checkpoint log Recovery

CCASTAT Pointer to table Security features
Host Language Interface Programming Guide 13-3

CCAPRINT file

CCAPRINT defines a single sequential output dataset that contains a summary
of the user parameter lines and output generated by User 0 (from CCAIN in
IFAM4).

The CCAPRINT file is required for IFAM1 and IFAM4 jobs.

The following guidelines apply when using CCAPRINT:

• In IFAM1 and IFAM4 under z/OS, specify SYSOUT=A.

• In IFAM1 under VSE, specify SYSLST

• In IFAM1 under CMS, specify PRINTER
13-4 Model 204

CCATEMP file

CCATEMP is a scratch file, either temporary or permanent, whose pages are
used as work areas during a Model 204 run. The CCATEMP dataset is
initialized with each Model 204 run. CCATEMP must not be shared with other
Model 204 jobs.

The CCATEMP file is required for IFAM1 and IFAM4 jobs.

Multiple uses for CCATEMP

Model 204 uses the scratch file for HLI jobs primarily to hold the results of
IFFIND calls and record set lists.

In addition, Model 204 uses CCATEMP in the following ways:

• Copies of sorted records

Copies of records sorted via IFSORT occupy pages in CCATEMP.

For a single cursor IFSTRT thread, Model 204 releases the pages in
CCATEMP as the records are processed by IFGET or when IFFIND is
called. For a multiple cursor IFSTRT thread, Model 204 holds the pages in
CCATEMP until the sorted set is released.

• File group references

File groups also use the scratch file. For IFAM1 and IFAM4 jobs that use
file groups, CCA recommends that you allocate a scratch file of 20 pages
for each thread. (Note that in IFAM1, a single thread is permitted.)

CCATEMP size requirements

When using CCATEMP, the unit type must be compatible with the installation
site’s page size, as summarized below.

The size of the scratch file is related to the complexity of the retrievals executed
during the run.

Note also that copies of sorted records in CCATEMP are at least as large as
the original records in Table B. Coded values are expanded to character
strings. You must allocate enough CCATEMP space to hold the records to be
sorted.

Note: If you encounter the CCATEMP FULL error message in an IFAM1 or
IFAM4 job run, increase the CCATEMP space allocation.

Page size Allowable CCATEMP units

6184 3330, 3340, 3350, 3375, 3380, 3390, or 2305-2
Host Language Interface Programming Guide 13-5

Using secondary CCATEMP datasets

To increase the efficiency of the scratch file for very heavy usage, you can
partition CCATEMP into as many as 10 secondary datasets (CCATMP0
through CCATMP9).

You can optionally provide secondary scratch datasets for a Model 204 run
using file names CCATMP0 through CCATMP9. Model 204 logically appends
all the space in each available dataset to CCATEMP.

Spreading the datasets over many channels and balancing the channel load
improves performance. Also, partitioning makes it possible to incorporate one
or more high-speed storage media for CCATEMP.

Note: If you specify CCATMP datasets in a job run, Model 204 attempts to
open the secondary datasets in numerical order and stops at the first missing
dataset.
13-6 Model 204

CCASERVR file

All runs that use server swapping (the parameter NSERVS is less than
NUSERS) require one of more server datasets, which can be either temporary
or permanent files.

CCASERVR is required in IFAM4 (and is not valid for use in IFAM1).

The server datasets are used for temporary storage of a user’s work area when
that user is swapped out of memory. Refer to Chapter 12 for information about
the user work area.
Host Language Interface Programming Guide 13-7

CCASNAP file

Model 204 can trap program checks and file integrity problems at appropriate
times and print snap dumps of selected portions of storage to the CCASNAP
dataset.

These dumps are invaluable to CCA Customer Support for locating and
correcting errors.

The CCASNAP file is required for IFAM1 and IFAM4 jobs.

The following guidelines apply when using CCASNAP:

• In IFAM1 and IFAM4 under z/OS, either the SYSUDUMP or SYSMDUMP
dataset might also be required to diagnose certain errors. Both are normally
specified as SYSOUT datasets.

• In IFAM1 under VM, a VMDUMP may be required in addition to CCASNAP.

• In IFAM1 under VSE, CCASNAP goes to SYSLST.
13-8 Model 204

CCASTAT file

CCASTAT points to a previously created password table dataset.

CCASTAT is required for any IFAM1 or IFAM4 run that uses the Model 204
security features.
Host Language Interface Programming Guide 13-9

CCAGRP file

CCAGRP is a previously created dataset that stores definitions of permanent
groups.

CCAGRP is required for any IFAM1 or IFAM4 run that accesses permanent file
groups.

Note: To access the definitions in the CCAGRP file, set option 2 of the
SYSOPT parameter.
13-10 Model 204

CCAJRNL and CCAAUDIT files

The Model 204 journal (CCAJRNL) and audit trail (CCAAUDIT) files provide a
log of information about a Model 204 run. A single execution of Model 204 can
log information in a journal, an audit trail, or both.

The CCAJRNL and CCAAUDIT files are optional for IFAM1 and IFAM4 jobs.
However, CCAJRNL is required for the recovery facility and functions
differently for recovery in IFAM1 and IFAM4.

See Chapter 16 for more information about CCAJRNL and CCAAUDIT used in
HLI jobs.
Host Language Interface Programming Guide 13-11

CHKPOINT file

CHKPOINT is a sequential file that contains copies of Model 204 file pages
before updates are applied and marker records that record the date and time
when no updating activity is occurring on the system.

The CHKPOINT file is optional for IFAM1 and IFAM4 jobs. However,
CHKPOINT is required for checkpointing, which is used with the recovery
facility.

See Chapter 16 for more information about CHKPOINT used in HLI jobs.
13-12 Model 204

14
IFAM2 CICS Processing

In this chapter

• Overview

• CICS program link-editing requirements

• CICS application program work areas

• CICS abend handling

• CICS abend handling: macro-level program

• CICS abend handling: command-level program
Host Language Interface Programming Guide 14-1

Overview

This chapter describes special requirements of CICS programs for application
programmers who are using the Host Language Interface facility.

For more information

Refer to the Model 204 Host Language Interface Reference Manual for
information about HLI jobs running in IFAM2 under CICS.
14-2 Model 204

CICS program link-editing requirements

The version of IFENTPS that is link-edited with your program must be
assembled specifically for either macro- or command-level program code. To
do this, set the conditional assembly flag &IFCALLR in the CICFG copy
member.

IFENTPS requires that register 13 contain the following address.

For... Register 13 must contain...

Macro-level module 18-word register save area

Command-level module DFHEISTG storage area
Host Language Interface Programming Guide 14-3

CICS application program work areas

Before issuing any IFAM2 call, ensure that you can address the following CICS
areas:

• Common System Area (CSA)

• Task Control Area (TCA)

• Transaction Work Area (TWA)

Transaction work area (TWA)

The IFAM2 interface requires 88 bytes of CICS TWA area. When preparing an
application program, ensure that the 88 bytes of the Transaction Work Area
(TWA) are reserved for the CICS/Model 204 interface. The Model 204 TWA
area may be displaced within the TWA area if application programs require the
TWA area.

The area that Model 204 uses may be displaced within the TWA by setting the
&IFTWADP in the CICFG copy member. The &IFTWADP value in the CICFG
copy member specifies the number of bytes to displace the Model 204 TWA
area. The value must be expressed in multiples of four because the Model 204
TWA area fullword-aligns.

Note: Both IFENTPS and IFPS must be assembled with the same CICFG copy
member values. The TWA area is used to pass parameters between the two
and, thus, must refer to the same area.

Your installation might include several compatible versions of IFENTPS and
IFPS for applications that use different TWA areas. The CICS load module
name that IFENTPS is linked to and its name in the CICS load library can be
specified in &IFAM2LM within the CICFG copy member. During installation,
take care that IFENTPS and IFPS are generated in compatible sets.

For example, consider a version of IFENTPS that has its TWA area displaced
by 20 bytes and needs to link to a version of IFPS that also expects its TWA
area to be displaced by 20 bytes. If the reference to the TWA area is the same,
both a macro-level and a command-level version of IFENTPS can refer to the
same copy of IFPS.

COBOL example of addressing the CICS areas

The following excerpt from a COBOL program illustrates how you can address
the CICS areas (CSA, TCA, and TWA) for the interface from command-level
CICS. You can also use this interface with macro-level CICS.

,'(17,),&$7,21�',9,6,21�

�

�

�

14-4 Model 204

'7�',9,6,21�

:25.,1*�6725$*(�6(&7,21�

�

�

�

/,1.$*(�6(&7,21�

��'<1$0,&�6725$*(�32,17(56�

���),//(53,&�6����&203�

���&6$�32,17(53,&�6����&203�

���7&$�32,17(53,&�6����&203�

���7:$�32,17(53,&�6����&203�

�&23<��')+&6$'6�

�&23<��')+7&$'6�

��7:$�$5($�

���0����,17(5)$&(�3257,21�3,&�;�����

���<285�7:$�3257,21�3,&�;�"��

352&('85(�',9,6,21�

�(;(&�&,&6�$''5(66�&6$�&6$�32,17(5��(1'�(;(&�

6(59,&(�5(/2$'�')+&6$'6�

�029(�&6$&'7$�72�7&$�32,17(5�

6(59,&(�5(/2$'�')+7&$'6�

�(;(&�&,&6�$''5(66�7:$�7:$�32,17(5��(1'�(;(&�

���&$//�·,)&6$·�86,1*�')+&6$'6��

COBOL2 example of addressing the CICS areas

The following excerpt from a COBOL2 program illustrates how you can address
the CICS areas (CSA and TWA) for the interface from command-level CICS.

,'(17,),&$7,21�',9,6,21�

�

�

�

'7�',9,6,21�

:25.,1*�6725$*(�6(&7,21�

��:.�$'5�

��&6$�32,17(532,17(5�

��7:$�32,17(532,17(5�

/,1.$*(�6(&7,21�

&23<�')+&6$'6�

352&('85(�',9,6,21�

�(;(&�&,&6�$''5(66�&6$�:.375���(1'�(;(&�

�(;(&�&,&6�$''5(66�7:$�:.375���(1'�(;(&�

6(7�$''5(66�2)�')+&6$'6�72�&6$�32,17(5�
Host Language Interface Programming Guide 14-5

6(7�$''5(66�2)�7:$�$5($�72�7:$�32,17(5��

�&$//�·,)&6$·�86,1*�')+&6$'6��

Temporary storage queue

A temporary storage queue is created for each Host Language Interface
transaction when the IFSTRT or IFDIAL call is issued. No other user program
can use this queue. The name of the queue is:

CCAIxxxx

where:

• xxxx is equal to EIBTRMID
14-6 Model 204

CICS abend handling

The Model 204 IFAM2 interface provides automatic abend handling that
operates along with your application program abend handler, if any.

Whenever an abend occurs, open CRAM channels must be cleaned up and
CICS resources must be released. If the IFAM2 abend handler is not in effect,
the user application abend handler must perform these tasks. If the IFAM2
abend handler is in effect, the IFAM2 abend handler supersedes any user
abend handler and performs these tasks automatically.

This section provides an overview of IFAM2 abend handling, followed by
examples of suggested abend handling.

How to deactivate IFAM2 abend handling

To deactivate the automatic IFAM2 abend handling, set the &IFABEND
parameter in the CICFG copy member to NO.

Protecting against abend exposure

Because CICS cancels abend handlers for pseudo-conversational waits, an
exposure gap in abend protection occurs after each pseudo-conversational
wait. During the time an application restarts after a pseudo-conversational wait
and before its next IFAM2 call, the transaction can abend without invoking the
IFAM2 abend handler.

To prevent such an exposure, the application program must establish an abend
handler immediately upon entering the program. This abend handler must call
IFFNSH to close all CRAM channels and release all CICS resources, and must
contain any application-specific logic. The program examples in the next
section show coding that protects against this abend exposure.

If the application does not require its own abend handler, it can use the IFAM2
call, IFABXIT, which establishes the IFAM2 abend handler. IFABXIT is specific
to the CICS environment and is for the convenience of the programmer.

Call IFABXIT as soon as possible after entering the program but only after the
initial IFCSA call, which still must be the first call of any IFAM2 application
session. The IFABXIT call protects the application against hung CRAM
channels in the event of an abend prior to the first functional IFAM2 call.

How IFAM2 abend handling operates

The Model 204 IFAM2 abend handler is set by the first IFAM2 CICS call (other
than IFCSA) and remains active until an IFHNGUP or IFFNSH call occurs, the
transaction ends, or a pseudo-conversational wait is entered. After a pseudo-
conversational wait, the abend handler is reset on the next IFAM2 call.
Host Language Interface Programming Guide 14-7

When it is invoked, the IFAM2 abend handler supersedes any user abend
handler, operating differently in the macro- and command-level environments:

• Macro-level coded applications cannot use the PUSH and POP
commands. Applications that need their abend handler to be in effect after
an IFAM2 call must reset their abend handler after returning from each
IFAM2 call.

• For command-level applications, the IFAM2 interface issues a PUSH
HANDLE command to save the existing application’s abend handler before
establishing the IFAM2 abend handler.

In the event of an abend, the IFAM2 interface releases all CRAM channels
and CICS resources. It issues a POP HANDLE command to restore the
application’s abend handler and then issues an abend call. The abend call
drives the application’s abend handler.
14-8 Model 204

CICS abend handling: macro-level program

Table 14-1shows recommended IFAM2 abend handling for a macro-level
program.

This example assumes that the application’s abend handler calls IFFNSH to
clean up open IFAM2 CRAM channels and CICS resources.

The following points describe each step in the program flow:

1. The transaction program starts. Because no Model 204 CRAM channels
are open and CICS resources are not allocated, there is no exposure.

2. An IFCSA call is issued. Prior to Model 204 Version 3.1, IFCSA had to be
the first call of any IFAM2 application session. For Model 204 Version 3.1
and later, the IFCSA call is not required. For upward compatibility, the
IFCSA call is allowed, but performs no function.

3. The first IFAM2 call after IFCSA is issued. During this call, the IFAM2 inter-
face, IFENTPS, establishes the Model 204 abend handler. This remains in
effect until the program ends or enters a pseudo-conversational wait.

4. The transaction enters a pseudo-conversational wait. CICS cancels the
abend handler.

5. The transaction program resumes. No abend handler is active until the
application program issues the first IFAM2 call. If an abend occurs, the
CRAM channels are not closed, resulting in hung CRAM channels. Any
CICS resources, such as storage and queue entries, are not released.

6. The transaction establishes its own abend handler as the first CICS call
upon entry. Because the user abend handler is coded with an IFFNSH call,
an abend within the user program calls the IFAM2 interface to close exist-
ing CRAM channels and release CICS resources.

Table 14-1. CICS Macro-level program

Step Program flow Abend handler in effect

1. Transaction start No abend handler active

2. IFCSA call No abend handler active

3. Next IFAM2 call IFAM2 abend handler active

4. Pseudo-conversational wait IFAM2 abend handler canceled

5. Transaction restart No abend handler active, exposure for
CRAM channel recovery

6. DFHPC TYPE=ABEND (or
IFABXIT)

User abend handler active (IFAM2
abend handler active)

7. IFAM2 call IFAM2 abend handler active

8. DFHPC TYPE=ABEND User abend handler reset
Host Language Interface Programming Guide 14-9

Note: An alternative is to call IFABXIT, establishing the IFAM2 abend
handler before any functional IFAM2 call.

7. An IFAM2 call is issued. The IFAM2 abend handler goes into effect.

8. The transaction reestablishes its own abend handler. Macro-level applica-
tions requiring their own abend handlers must reset their own abend han-
dlers after each IFAM2 call.
14-10 Model 204

CICS abend handling: command-level program

Table 14-2 shows recommended IFAM2 abend handling for a command-level
program.

This example assumes that the application’s abend handler calls IFFNSH to
clean up open IFAM2 CRAM channels and CICS resources.

The following points describe each step in the program flow:

1. The transaction program starts.

2. An IFCSA call is issued. Prior to Model 204 Version 3.1, IFCSA had to be
the first call of any IFAM2 application session. For Model 204 Version 3.1
and later, the IFCSA call is not required. For upward compatibility, the
IFCSA call is allowed, but performs no function.

3. The first IFAM2 call after IFCSA is issued. During this call, the IFAM2 inter-
face, IFENTPS, establishes the Model 204 abend handler. This remains in
effect until the program ends or enters a pseudo-conversational wait.

4. The transaction enters a pseudo-conversational wait. CICS cancels the
current abend handler.

5. The transaction restarts.

6. The transaction establishes its abend handler as the first CICS call upon
entry. because the user abend handler is coded with an IFFNSH call, an
abend within the user program calls the IFAM2 interface to close existing
CRAM channels and release CICS resources.

Note: An alternative is to call IFABXIT, establishing the IFAM2 abend
handler before any functional IFAM2 call.

7. An IFAM2 call is issued. The IFAM2 call sets its own abend handler, which
remains in effect until altered.

Table 14-2. CICS command-level program

Step Program flow Abend handler in effect

1. Transaction start No abend handler active

2. IFCSA call No abend handler active

3. Next IFAM2 call IFAM2 abend handler active

4. Pseudo-conversational wait IFAM2 abend handler canceled

5. Transaction restart No abend handler active. Exposure
form CRAM channel recovery.

6. HANDLE ABEND (OR IFABXIT) User abend handler active (IFAM2
abend handler active)

7. IFAM2 call IFAM2 abend handler active
Host Language Interface Programming Guide 14-11

14-12 Model 204

Part IV
HLI Transaction
Processing and
Recovery

This part describes transaction processing and recovery for
HLI users. It gives information that is useful for planning a re-
covery strategy and necessary for using the Model 204 recov-
ery facilities for HLI jobs.

15
HLI Transactions

In this chapter

• Overview

• Transaction processing

• Update unit boundaries

• Update units: designing your application

• HLI updating calls and update units

• HLI threads and transactions

• IFAM1 transaction

• IFAM2 transactions

• IFAM4 transactions

• Multithreaded IFAM2 and IFAM4 transactions

• Committing transactions for lock pending updates files

• Transaction backout facility

• Using the transaction backout facility

• Using transaction backout logs

• Transaction backout for LPU files
Host Language Interface Programming Guide 15-1

Overview

This chapter describes Model 204 transaction processing for the application
programmer who is using the Host Language Interface facility. It details the
action of HLI calls that perform update operations against the database and
gives information about backing out an incomplete transaction for a TBO file.

Read the sections that pertain to multiple cursor IFSTRT threads if you are
using multiple cursor functionality in your host language program for the first
time.

For more information

Refer to Chapter 1 for more information about using threads in HLI
applications. Refer to Chapter 9 for information about using HLI calls, IFCMMT
and IFCMTR, to end transactions.

Refer to Chapter 16 for information about recovery for HLI jobs. Refer to the
Model 204 File Manager’s Guide and Model 204 System Manager’s Guide for
more information about recovery and checkpointing.
15-2 Model 204

Transaction processing

In general terms, a transaction is a sequence of operations against the
database to access data. The order of the operations is defined by the user in
the application program. In data processing terms, there are two kinds of
transactions, based on the type of data access:

• Read-only

• Updating

An updating transaction has particular significance when processing against
the Model 204 database.

Update unit

An updating transaction corresponds to an HLI call or series of calls that
perform(s) an update operation, that is, an operation that modifies the
database. A Model 204 updating transaction is called an update unit. There are
two types of update units:

• Backoutable (that is, update units can be backed out), which includes:

– Data manipulation updates to transaction backout (TBO) files.

• Nonbackoutable (that is, update units cannot be backed out), including:

– Data manipulation updates to non-TBO files

– Procedure updates

– Data definition updates, for example, using IFDFLD (DEFINE FIELD)

Transaction is an update unit

In the Model 204 environment, the following terminology applies:

• The term transaction refers to a backoutable (TBO file) update unit.

• An updating call is an HLI call that performs an update operation on a TBO
file.

See “Transaction backout facility” on page 15-18 for information about backing
out transactions for TBO files.
Host Language Interface Programming Guide 15-3

Update unit boundaries

Update units for a multiple cursor IFSTRT thread

On a multiple cursor IFSTRT thread, a Model 204 transaction becomes active,
that is, a backoutable update unit is started, when the first updating call is
executed against the database. An updating call performs an update operation,
that is, an operation that modifies the database.

The update unit continues until it is explicitly ended by an IFCMMT, IFCMTR,
or IFBOUT call. The IFCMMT call ends the current transaction. A new update
unit does not begin until the next updating call is issued. Until the new update
unit begins, no transaction is active on the thread.

If the host language program using a multiple cursor IFSTRT thread does not
perform any update processing, no update units are allocated and no
transaction is activated for the thread.

Model 204 manages update units for a multiple cursor IFSTRT thread similarly
to User Language.

Update units for a single cursor IFSTRT thread

The boundaries of update units for single cursor IFSTRT threads are different
from those for multiple cursor IFSTRT threads and User Language. The thread
that starts an update unit must be the thread that ends the update unit. When
using IFDTHRD, your must assure in your coding that a change in threads does
not occur within the context of a single update unit. Always call IFCMT or
IFCMTR before calling IFDTHRD to assure that update unit processing starts
and completes on the same thread.

For single cursor IFSTRT threads, an update unit is started by the first IFSTRT
call issued by the host language program that starts an update thread
(THRD_IND is 0 in IFAM1; THRD_IND is 1 in IFAM2 / IFAM4).

In general, a new update unit starts as soon as the previous update unit ends
and a transaction remains active until host language processing is finished.
The only HLI functions that end the current update unit and do not immediately
start a new update unit are IFCHKPT and IFFNSH.

If an HLI job contains more than one IFSTRT thread with update privileges, all
those threads participate in the same transaction. And if the transaction is
backed out, all the updates for all the IFSTRT threads with update privileges
are backed out.

Note: Read-only IFSTRT threads are not included in update units. Only single
cursor IFSTRT threads with update privileges participate in Model 204
transactions.
15-4 Model 204

When an update unit ends

When an update (backoutable or nonbackoutable) ends, Model 204 performs
the following actions:

• Writes the current journal buffer out to the journal (CCAJRNL)

• Releases the exclusive lock on updated records in the pending updates
pool for any files with the LPU option set

• If the update unit is backoutable, frees the backout log and constraints log
for the transaction (which means that the transaction can no longer be
backed out)

• Commits the update unit to the database (or databases) that were modified

When a transaction backs out

When a transaction backs out, all the updates performed by that transaction are
undone and affected files are returned to the same state as before the
transaction began.

After the backout is complete, the transaction ends, and Model 204 performs
the same actions as for the end of an update unit. (See above.)

Refer to Chapter 16 for more information about backing out a transaction.
Host Language Interface Programming Guide 15-5

Update units: designing your application

Placing terminal I/O points outside update units

If a response is required from a terminal either to complete or back out a
transaction, a set of records that is exclusively locked for the update unit might
be unintentionally locked for a long time.

Avoid placing terminal I/O points between the start of a transaction or
backoutable update unit and the transaction’s end or backout. Place terminal
I/O points outside of transactions.

Note: When using a single cursor IFSTRT thread, update units inhibit
checkpoints and thus increase the amount of work to be done for recovery.
Refer to Chapter 16 for more information about checkpointing in your host
language application.

Unit of work for recovery

Update units have particular significance for Model 204 recovery. Recovery
uses the starting and ending points of update units to return files to logically and
physically consistent states. An update unit is a unit of work for recovery.

To plan for recovery when you are coding your HLI application program, you
must know where update units begin and end.
15-6 Model 204

HLI updating calls and update units

HLI calls that end the current update unit

On a multiple cursor IFSTRT thread, each of the following HLI calls ends the
current update unit.

Note that, in group file context, IFCLOSE ends the transaction only if it results
in the closing of a file and all files opened outside of the group have been
closed. IFCLOSE does not end the transaction if all files in the group are
opened singly.

On a single cursor IFSTRT thread with update privileges, all the calls listed
above (except for IFCMTR) end the current update unit and start a new update
unit, and CLOSE ALL is the only option for the IFCLOSE call.

HLI calls that start an undesignated update unit

On a single cursor IFSTRT thread with update privileges, each of the following
HLI calls performs different actions depending on whether or not an update unit
is active.

HLI call Equivalent User Language command

IFBOUT BACK OUT

IFCMMT COMMIT

IFCMTR COMMIT RELEASE

IFCLOSE CLOSE

IFDTHRD, if the thread has a file
open

IFFNSH

HLI call Equivalent User Language command

IFDELF DELETE FIELD

IFDFLD DEFINE FIELD

IFINIT INITIALIZE

IFNFLD RENAME FIELD

IFRFLD REDEFINE FIELD

IFRPRM

IFSPRM

RESET

SET

 If used to reset a file parameter
Host Language Interface Programming Guide 15-7

If no update unit is active

If no update unit is active when one of the previous HLI calls is issued,
Model 204 performs the following actions:

• Starts a nonbackoutable update unit

• Processes the update

• Ends the nonbackoutable update unit

• Starts a new update unit

If an update unit is active

If an update unit is active when one of the previous HLI calls is issued,
Model 204 performs the following actions:

• Ends the active update unit

• Starts a nonbackoutable update unit

• Processes the update

• Ends the nonbackoutable update unit

• Starts a new update unit

HLI calls that start a backoutable update unit

On a single cursor IFSTRT thread with update privileges, each of the following
HLI calls performs the following actions:

• Ends a nonbackoutable update unit if one is active

• Starts a backoutable update unit or continues a previously started
backoutable update unit

HLI call Equivalent User Language command

IFBREC STORE RECORD

IFDALL DELETE ALL

IFDREC DELETE RECORD

IFDVAL DELETE fieldname=value

IFDSET DELETE RECORDS IN

IFFILE FILE RECORDS

IFPUT
15-8 Model 204

HLI threads and transactions

Model 204 manages transactions for the threads that are started by a host
language application. Model 204 manages transactions differently for different
types of threads, depending in which environment (IFAM1, IFAM2, IFAM4) the
application is running.

Logical relationship of threads and transactions

The logical relationship between HLI threads and Model 204 transactions are
shown in simplified form in the diagrams in the following sections.

The diagrams do not show the detailed elements of the interface, which are
particular to each environment. Also, the diagrams provide an overview of HLI
transactions and do not represent the preferred HLI job, which is recommended
by CCA.

The figures use the following symbols:

Refer to Chapter 1 for more information about using threads in HLI
applications.

Symbol Meaning

MC Multiple cursor IFSTRT thread

ST Single cursor IFSTRT thread

DI IFDIAL thread

T-n Model 204 transaction
Host Language Interface Programming Guide 15-9

IFAM1 transaction

Single thread

In IFAM1, you can start a single thread in your HLI application program. The
updating calls that are issued on the thread are processed in the transaction.

Figure 15-Figure 15-1. shows the logical relationship between an HLI thread in
an IFAM1 application and a Model 204 transaction.

Figure 15-1. An IFAM1 Transaction

 start MC T-1

 start ST T-1

OR

OR

HLI job Model 204

 start DI T-1
15-10 Model 204

IFAM2 transactions

One or more threads

In IFAM2, you can start one or more threads in your HLI application program.

Each multiple cursor IFSTRT thread and IFDIAL thread processes as a single
transaction. In a multithreaded application, all single cursor IFSTRT threads
process as a single transaction, as shown in Figure 15-Figure 15-2. and Figure
15-Figure 15-3..

Figure 15-Figure 15-2. shows the logical relationship between HLI threads in
an IFAM2 application under z/OS or VSE and Model 204 transactions.

Figure 15-2. IFAM2 Transactions in z/OS or VSE

Note: CCA does not recommend that you mix multiple cursor and single cursor
IFSTRT threads in a HLI application.

T-1

T-2

T-3

T-4

 start MC

 start MC

HLI job Model 204

 start ST

 start ST

 start DI
Host Language Interface Programming Guide 15-11

Figure 15-Figure 15-3. shows the logical relationship between HLI threads in
an IFAM2 application under VM/CMS and Model 204 transactions. Under VM,
you can start a single thread in your IFAM2 job if you are using IFDIAL.

Figure 15-3. IFAM2 Transactions in VM

Note: CCA does not recommend that you mix multiple cursor and single cursor
IFSTRT threads in a HLI application.

T-1

T-2

T-3

T-1

 start MC

 start MC

HLI job Model 204

 start ST

 start ST

 start DI

OR
15-12 Model 204

IFAM4 transactions

One or more threads

In IFAM4, you can start one or more IFSTRT threads in your HLI application
program.

Each multiple cursor IFSTRT thread processes as a single transaction. In a
multithreaded application, all single cursor IFSTRT threads process together
as a single transaction.

Figure 15-Figure 15-4. shows the logical relationship between HLI threads in
an IFAM4 application and Model 204 transactions.

Figure 15-4. IFAM4 Transactions

Note: CCA does not recommend that you mix multiple cursor and single cursor
IFSTRT threads in a HLI application.

 start MC T-2

 start MC T-1

Subtask A: Subtask B:
HLI job Model 204

 start ST T-3

 start ST
Host Language Interface Programming Guide 15-13

Multithreaded IFAM2 and IFAM4 transactions

In IFAM2 and IFAM4, a host language job can start more than one thread.
When you start more than one single cursor IFSTRT thread in your HLI
application, Model 204 treats all of those threads as a single transaction.

For example, an IFBOUT executed on one of the single cursor IFSTRT threads
backs out the updates for all of the single cursor IFSTRT threads in the
application program. Likewise, an IFCMMT executed on one of the single
cursor IFSTRT threads commits the updates for all of the single cursor IFSTRT
threads in the program.

Multiple single cursor IFSTRT threads function as a separate transaction from
an IFDIAL thread or any multiple cursor IFSTRT threads that are started by the
application.

Note: CCA does not recommend that you mix multiple cursor and single cursor
IFSTRT threads in a HLI application. An HLI job that mixes single cursor and
multiple cursor IFSTRT threads processes multiple transactions separately
against the database. This might produce undesired results because a job
normally performs a logical unit of work.

Refer to Chapter 1 for more information about multithreaded host language
applications.

Multithreaded transaction with read-only IFSTRT threads

Single cursor IFSTRT threads with read-only privileges are not included in
update units. This can cause undesired results in a multithreaded application.
Such threads can access data from uncommitted nonbackoutable update units,
which can lead to logical inconsistencies if updates are made based on this
data.

If your HLI job uses multiple single cursor IFSTRT threads and performs any
updating operations, start all single cursor IFSTRT threads with update
privileges so that all of the threads participate in transaction processing.

To use a single cursor IFSTRT thread with updating privileges for retrieval
operations, open files on the thread with read-only passwords. This prevents
problems that result from accessing uncommitted updates when you use single
cursor IFSTRT threads with read-only privileges.

Using IFCMMT in a multithreaded transaction

A call that ends a multithreaded transaction (IFCMMT, IFCMTR, IFBOUT)
releases only the record and resource locks associated with the thread on
which it is issued.

Whenever one of these calls is issued in a multithreaded application, IFCMMT
must be issued on all the remaining threads that participate in the transaction.
This ensures that all associated record and resource locks are released.
15-14 Model 204

Note: If IFCMMT is not issued on all remaining threads in the multithreaded
transaction, it is possible for the HLI application to generate locking conflicts
with itself.
Host Language Interface Programming Guide 15-15

Committing transactions for lock pending updates files

Lock Pending Updates (LPU) locking mechanism

A TBO file, or any file with the LPU option enabled, exclusively locks all records
updated within a transaction. When the transaction completes (when the
update unit is committed) or is backed out, the exclusive lock on the entire set
of updated records in the pending update pool is released.

The locking mechanism prevents updated records in one update unit from
being used by other applications until Model 204 establishes whether the
update is committed. An update can be backed out without affecting the logical
validity of any other update.

Minimizing enqueuing conflicts

A TBO file, or any file with the LPU option enabled, generates an exclusive lock
on updated records until the updates are committed. The LPU locking behavior
may result in many additional enqueuing conflicts.

You can minimize the occurrence of enqueuing conflicts on those files by
frequently issuing a call to IFCMMT. If you issue IFCMMT frequently, that is,
after each updating call, each record update is immediately committed and
each LPU lock is released.

For example, the following COBOL excerpt shows a frequent call to IFCMMT:

*(7�1(;7�5(&25'�

&$//��,)*(7��86,1*���

,)�5(7&2'(�,6�(48$/�72��

*2�72�12�025(�5(&25'6�

�3(5)250�5(&25'�352&(66,1*�5287,1(6

�

�

�

&$//��,)387��86,1*���

&$//��,)&007��86,1*���

2�72�(7�1(;7�5(&25'�

12�025(�5(&25'6�

In this example, the LPU exclusive lock is obtained on each record as it is
updated with IFPUT, then it is released with a call to IFCMMT.

Alternative for minimizing enqueuing conflicts

When you issue frequent calls to IFCMMT, as described in the preceding
section, although record locking conflicts are reduced, a particular application
15-16 Model 204

might actually take longer to run because of the overhead associated with
commit processing.

An alternative to immediate updating is to issue IFCMMT less frequently, so
that LPU locks on updated records in the pending update pool are held until the
entire found set is processed.

For example, the COBOL excerpt below shows an infrequent call to IFCMMT:

*(7�1(;7�5(&25'�

&$//��,)*(7��86,1*���

,)�5(7&2'(�,6�(48$/�72��

*2�72�12�025(�5(&25'6�

�3(5)250�5(&25'�352&(66,1*�5287,1(6

�

�

�

&$//��,)387��86,1*���

2�72�(7�1(;7�5(&25'�

12�025(�5(&25'6�

&$//��,)&007��86,1*���

In this example, the LPU exclusive lock is obtained on each record as it is
updated with IFPUT. The LPU locks are held on the updated records in the
pending update pool until the entire found set is processed, then they are
released with a call to IFCMMT.

Note that IFDREC, IFDSET, and IFFILE might result in logical data
inconsistencies. See page 15-22 for more information about logical
inconsistencies.

Refer to Chapter 9 for more information about using HLI calls to end
transactions.
Host Language Interface Programming Guide 15-17

Transaction backout facility

The Model 204 transaction backout facility provides a mechanism to undo the
effects of incomplete updates to TBO files. A backout is a logical inversion of
an update, which restores a file to its original state before the current update
unit started.

The backout mechanism logically inverts the effects of an update to a TBO file
by issuing compensating updates. The backout of a transaction can be initiated
only on active transactions. Completed transactions cannot be backed out.

Invoking the backout mechanism ends the current transaction. A backout
operation itself cannot be backed out. See “Using the transaction backout
facility” on page 15-19 for more information about backing out a transaction.

See page 15-7 for a description of update units. For complete information about
the transaction backout facility, refer to the Model 204 File Manager’s Guide.

Requirements for a backout

Model 204 requires that the following conditions be met for a backout to be
successful:

• All files in the transaction must be TBO files, so that transaction backout
logging is active.

A backout log stores compensating updates and a constraints log prevents
reuse of freed file resources until the transaction ends. See page 15-20 for
a description of these logs.

• The updated records must be locked exclusively so that no other update
units are affected.

Note: TBO is the default file type. Lock pending updates is an option of the
FOPT parameter that is enabled or disabled on a file by file basis.

See page 15-22 for information about backing out LPU files. Refer to the
Model 204 File Manager’s Guide and Model 204 Command Reference Manual
for more information about the FOPT parameter.
15-18 Model 204

Using the transaction backout facility

Model 204 automatically backs out an incomplete update for a TBO file under
any of the following conditions:

• Model 204 cancels a HLI call or User Language request

• Model 204 detects a file problem, such as a table full condition

• Model 204 restarts a user who has a transaction in progress (hard restart)

Upon canceling a HLI call in an active transaction, Model 204 returns a
completion code (RETCODE) of 10. Model 204 automatically backs out the
active transaction and returns control to the HLI application program.

You can use the IFGERR call to retrieve the text of the latest cancellation and
counting error messages generated by Model 204. Note that IFGERR returns
a null value if no such message exists.

Using IFBOUT to backout updates

A host language application can initiate a backout to undo an incomplete
update to a TBO file. To activate the backout mechanism in your HLI program,
issue the IFBOUT call. Note that IFBOUT is valid for use only with TBO files.

When the IFBOUT call is successfully executed, Model 204 performs the
following actions:

• Backs out the current transaction

• Ends the transaction

• Releases the LPU exclusive lock on updated records in the pending
updates pool

Note: Upon executing IFBOUT, Model 204 does not release found sets. A call
to IFBOUT does not change the current record.
Host Language Interface Programming Guide 15-19

Using transaction backout logs

Backout log

Model 204 builds a log of compensating updates, called a backout log, for each
active transaction. When a transaction ends or is backed out, Model 204
discards the log for that particular transaction.

The backout log contains the necessary information to do a transaction backout
on each active transaction in the Model 204 run. For example, if an IFDREC
(DELETE RECORD) call is processed, all the information necessary to rebuild
the entire deleted record must be available to Model 204 in case the transaction
containing the IFDREC operation is backed out.

Model 204 stores the backout log in CCATEMP. At least one CCATEMP page
is always used for transaction backout logging.

Constraints log

Model 204 builds a log of freed resources, called a constraints log, for each
active transaction. When a transaction ends or is backed out, Model 204
discards the constraints log entries for that particular transaction.

Model 204 keeps the constraints log to guarantee the availability of resources
freed by an active transaction. For example, the IFDREC, IFDVAL, IFDALL,
and IFPUT calls free table space and other file resources. It is important that
such freed file resources are not reused by other active transactions until the
transaction that freed the resources ends.

Model 204 stores the constraint information in CCATEMP, in specially
formatted pages.

Issue frequent calls to IFCMMT

To help keep both the backout log and the constraints log a manageable size,
make transactions as brief as possible and issue IFCMMT as often as is
feasible.

Refer to Chapter 9 for information about using IFCMMT.

Backout logging and CCATEMP space

Model 204 stores the backout and constraints logs in CCATEMP.

Transactions that are allowed to continue over many file updates increase the
size of backout and constraint logs and can degrade the performance slightly
for users who are doing backout logging.

Large backout and constraint logs also increase the possibility of CCATEMP
filling. If transaction logging or constraint records fill up CCATEMP, Model 204
15-20 Model 204

backs out the active transaction and cancels the user request, but does not
restart the user.

Lessening CCATEMP space requirements

You can lessen the CCATEMP space required for logging and constraint
records if you keep transactions short in your host language application, so that
they contain a few file updates, by issuing frequent calls to IFCMMT.

Note: Theoretically, the only upper limit on the number of pages that can be
used is the CCATEMP size. However, other uses of CCATEMP space limit the
backout and constraint log pages that are available to the transaction backout
facility. You might need a larger CCATEMP if you use TBO files.

Refer to the Model 204 System Manager’s Guide for more information about
the size calculation of CCATEMP.
Host Language Interface Programming Guide 15-21

Transaction backout for LPU files

HLI calls that do not lock records for LPU files

Three updating calls function differently from normal LPU file processing. When
processing against files that have the LPU option enabled, the following HLI
calls do not lock records:

The records that are updated with any of these calls are not added to the
pending update pool and are not locked for the remainder of the update unit.
Deleted records are not locked because they no longer exist in the file, and thus
cannot be accessed by other update units.

Note: These calls are the only exceptions to the exclusive locking behavior of
LPU files on updated records.

Logical inconsistencies can occur when a transaction involving IFDREC,
IFDSET, and IFFILE is backed out.

Logical inconsistencies with deleted records

When you are using TBO files with the LPU option enabled, logical
inconsistencies can occur when a transaction involving IFDREC or IFDSET to
delete records is backed out.

To prevent logical inconsistencies when deleting records, issue frequent calls
to IFCMMT.

The following example shows why there is a need to keep transactions brief
when deleting records, using IFCMMT to reduce the likelihood of logical
inconsistencies.

In this example, events occur in the following order:

1. User 1 begins processing, deletes (IFDSET) the set of records with NAME
= SMITH, and continues to update other records.

Note: The deleted set of records is not locked (IFDSET does not lock
records), and User 1’s transaction is not complete.

2. User 2 begins processing and finds the set of records with either NAME =
SMITH or NAME = SAUNDERS.

3. There is no enqueuing conflict because the deleted records do not exist.

HLI call Equivalent User Language command

IFDREC DELETE RECORD

IFDSET DELETE SET

IFFILE FILE
15-22 Model 204

4. User 2 adds a field to his found set (which includes only SAUNDERS
records), prints a report, and ends his transaction.

5. Subsequently, User 1’s application comes to a point where it calls for the
transaction in progress to be backed out. Because the deletion of the
SMITH records is in the backed out transaction, the SMITH records reap-
pear on the file.

However, the original SMITH records do not have the field added by User
2. There is a logical inconsistency in the file.

If, in the first step, User 1 had issued an IFCMMT immediately after deleting the
SMITH records, no inconsistency would have occurred unless the backout
mechanism had been automatically activated during that short piece of the user
request.

Logical inconsistencies using IFFILE

When you are using TBO files with the LPU option enabled, logical
inconsistencies can occur when a transaction involving IFFILE to update
records is backed out.

To prevent logical inconsistencies when updating records with IFFILE, use
IFFNDX to lock records exclusively and hold the lock until after the update unit
that contains the IFFILE call ends.
Host Language Interface Programming Guide 15-23

15-24 Model 204

16
Recovery and Checkpointing

In this chapter

• Overview

• Model 204 recovery facilities

• Recovery Logging

• Checkpointing

• Automatic checkpointing: CPTIME

• Automatic checkpointing: CPSORT

• IFCHKPT checkpointing

• Checkpoint processing steps: CPTIME main flow

• Checkpoint processing steps: CPTQ timer

• Checkpoint processing steps: CPTO timer

• Checkpoint processing steps: CPTIME time-out

• Checkpoint processing steps: CPSORT main flow

• Checkpoint processing steps: CPSORT time-out

• Checkpoint Processing steps: IFCHKPT main flow

• Checkpoint processing steps: IFCHKPT time-out
Host Language Interface Programming Guide 16-1

Overview

This chapter describes Model 204 recovery and checkpoints, which are used
for recovery, for application programmers who are using the Host Language
Interface facility.

Refer to the descriptions of particular HLI calls and their use in transaction
processing, and code your HLI application to minimize the amount of work
required for recovery.

Read the information about checkpoints on a multiple cursor IFSTRT thread if
you are using multiple cursor functionality in your HLI application for the first
time.

For more information

Follow the guidelines in this chapter for using the Model 204 recovery facilities
for HLI jobs. Note that you might need to ask your Model 204 system
administrator for additional assistance when running recovery for HLI jobs.

Refer to Chapter 15 for information about managing HLI transactions. Refer to
the Model 204 System Manager’s Guide for complete information about
recovery and checkpoints.
16-2 Model 204

Model 204 recovery facilities

IFAM1 roll back recovery

In IFAM1, only roll back recovery is available. You cannot do roll forward or
media recovery in IFAM1.

For roll back recovery, you must include the CHKPOINT file in the IFAM1 job.
To run the recovery step, run a BATCH204 job with the CHKPOINT file from the
IFAM1 job as input and issue the RESTART command.

On a single cursor IFSTRT thread, Model 204 automatically marks the start and
end points on the CHKPOINT file. You can specify additional checkpointing to
be performed throughout the IFAM1 job run by specifying either or both the
CPTIME and CPSORT user zero parameters.

On a multiple cursor IFSTRT thread, you can specify checkpointing to be
performed throughout the IFAM1 job by specifying the CPTIME user zero
parameter.

Note that you cannot issue the IFCHKPT call in your IFAM1 application.

See “Enabling the checkpoint facility” on page 16-5 for more information about
IFAM1 checkpointing.
Host Language Interface Programming Guide 16-3

Recovery Logging

The Model 204 journal (CCAJRNL) and audit trail (CCAAUDIT) files provide a
log of information about a Model 204 run. A single execution of Model 204 can
log information in a journal, in an audit trail, or in both files.

These logs for HLI use are described in more detail in the following sections.
For complete information about the journal and audit trail, refer to the
Model 204 System Manager’s Guide.

Journal

The journal is a sequential file that maintains run information and can be used
to analyze the functional operation of Model 204. Except for IFAM1, CCAJRNL
contains the following information, which is provided during execution of a
Model 204 job:

• User input

• System messages

• Roll forward entries

In IFAM1, the journal does not contain roll forward information.

Note: The journal is required if system RESTART recovery or media recovery
is being used. The journal is produced in a nonprintable format that is used
during system recovery and media recovery.

To use the journal in IFAM1, include a CCAJRNL DD, DDBL, or FILEDEF
statement in the job setup. In IFAM4, include a CCAJRNL DD statement.

You can use the Audit204 utility to print the journal, to format billing information,
and to analyze some types of system statistics.

Audit trail

The audit trail is a formatted form of the journal. It contains all the information
that is kept in the journal except the roll forward information (that is, the user
input and system messages).

The audit trail can be printed directly by a Model 204 run without requiring a
separate job step. It is invaluable for debugging application programs and for
analyzing system performance.

CCA recommends that you use an audit trail under the following conditions:

• For HLI batch jobs, to avoid running an extra job step to print the journal

• In jobs that require a printed log

To use the audit trail in IFAM1, include a CCAAUDIT DD, DDBL, or FILEDEF
statement in the job setup. In IFAM4, include a CCAAUDIT DD statement.
16-4 Model 204

Checkpointing

The Model 204 checkpoint facility consists of pseudo-subtasks, which work
together to take checkpoints, and the CHKPOINT file.

The CHKPOINT is a sequential file that contains copies of file pages before
updates are applied (called before-images or pre-images) and marker records
(called checkpoints) that record the date and time when the system is
quiescent, that is, when no updating activity is occurring.

Each checkpoint taken during a Model 204 run marks a time when no updates
are in progress. When a checkpoint is taken, Model 204 writes a record
containing a date and time stamp to CHKPOINT.

Using the checkpoint facility in conjunction with the recovery facilities, a valid
copy of the Model 204 database can be recovered after a system failure. See
“Model 204 recovery facilities” on page 16-3 for a description of roll back, roll
forward, and media recovery.

Refer to the Model 204 System Manager’s Guide and Model 204 File
Manager’s Guide for complete information about recovery and checkpointing.

Enabling the checkpoint facility

In IFAM1 and IFAM4, to enable checkpointing, include the following in the HLI
job setup:

• A job control CHKPOINT DD, DLBL, or FILEDEF statement (which defines
the CHKPOINT file)

• The RCVOPT (recovery options) system parameter, set to 1 or to 9 if roll
forward logging is also used, either on the User 0 parameter line in the
CCAIN file or in the JCL EXEC parameter (which indicates that checkpoints
are to be taken)

In IFAM2, the CHKPOINT file and RCVOPT parameter are specified in the
Model 204 online run. Refer to the Model 204 Host Language Interface
Reference Manual for information about HLI jobs.

Refer to the Model 204 System Manager’s Guide for detailed information about
the CHKPOINT file. Refer to the Model 204 File Manager’s Guide for more
information about using the RCVOPT parameter.

Four different checkpointing mechanisms

Model 204 provides the HLI user with four different mechanisms by which
checkpointing can be activated, either automatically or explicitly at the user’s
request.

When used, the following User 0 parameters cause Model 204 to automatically
initiate an attempt to take a checkpoint:
Host Language Interface Programming Guide 16-5

• CPTIME, which performs a checkpoint attempt at timed intervals

• CPSORT, for which a checkpoint attempt is initiated by HLI calls to IFSTRT
and IFFNSH on a single cursor IFSTRT thread

The following functions provide the Model 204 user with a means to explicitly
initiate checkpointing:

• HLI call to IFCHKPT in IFAM2 or IFAM4

• CHECKPOINT command, which can be issued only on an IFDIAL thread

Checkpointing specific to HLI processing for CPTIME, CPSORT, and IFCHKPT
is described in more detail on the following pages. Refer to the Model 204
Command Reference Manual for information about the CHECKPOINT
command.
16-6 Model 204

Automatic checkpointing: CPTIME

When timed checkpointing is activated, Model 204 attempts to take a
checkpoint at regular timed intervals. This process is controlled by the following
User 0 parameters:

• CPTIME, which is the number of minutes between attempts to take a
checkpoint

• CPTQ, which is the number of seconds to wait for IFSTRT threads to
quiesce before timing out a checkpoint

• CPTO, which is the number of seconds to wait for IFDIAL threads, or User
Language threads in IFAM2, to quiesce before timing out a checkpoint

When the CPTIME interval expires

When the CPTIME interval expires, Model 204 disallows new update units.
Model 204 performs other actions depending on the status of update units and
the CPTQ and CPTO checkpoint parameters.

Model 204 performs the following actions:

• If the system is quiescent, that is, no updates are currently in progress,
Model 204 first takes a checkpoint and then allows new updates to begin.

• If any IFSTRT threads have updates in progress, Model 204 starts the
CPTQ timer.

Whenever an update unit ends, Model 204 checks for any other IFSTRT
updates in progress and repeats the process until no more IFSTRT threads
are updating or until CPTQ expires.

• If any IFDIAL threads, or User Language threads in the IFAM2
environment, have update units in progress, and if the CPTQ interval has
not expired, Model 204 starts the CPTO timer.

Whenever an update unit ends, Model 204 checks for any other IFDIAL
updates (or User Language thread updates in the IFAM2 environment) in
progress and repeats the process until no more IFDIAL threads, or User
Language threads in the IFAM2 environment, are updating or until CPTO
expires.

Specifying a CPTIME value

In IFAM2, CPTIME is set in the Model 204 Online run. In IFAM1 and IFAM4, you
can specify the CPTIME User 0 parameter in the CCAIN input file. If you do not
specify a value, CPTIME defaults to a value of 0, and timed checkpoints are
disallowed for the HLI/Model 204 run.

A user having system manager privileges can reset the CPTIME parameter
only if CPTIME is set to a nonzero value on the User 0 parameter line.
Host Language Interface Programming Guide 16-7

CPTIME processing steps

See the following processing flow charts for a detailed description of the steps
involved in CPTIME checkpointing:

• “Checkpoint processing steps: CPTIME main flow” on page 16-12

• “Checkpoint processing steps: CPTQ timer” on page 16-13

• “Checkpoint processing steps: CPTO timer” on page 16-14

• “Checkpoint processing steps: CPTIME time-out” on page 16-15

Refer to the Model 204 System Manager’s Guide for more information about
the CPTIME parameter.
16-8 Model 204

Automatic checkpointing: CPSORT

CPSORT checkpointing attempts to take a checkpoint upon the execution of
the initial IFSTRT call (only for a single cursor IFSTRT thread) in an HLI job and
upon execution of an IFFNSH call on a single cursor IFSTRT thread for every
IFAM2 job (which uses single cursor IFSTRT threads).

Note: CPSORT can be used on a single cursor IFSTRT thread, and is not
available for use on a multiple cursor IFSTRT thread.

CPSORT checkpointing is controlled by the following User 0 parameters:

CPSORT operates separately from CPTIME and has no effect on the timing of
CPTIME checkpoints.

Specifying a CPSORT value

In IFAM2, CPSORT is set in the Model 204 Online run. The CPSORT
parameter can be reset by a user having system manager privileges.

Note: CPSORT defaults to a value of 1. You can specify a higher value.
However, a high CPSORT value can inhibit new update units for long periods
of time and affect overall system throughput.

If you specify a value of 0 for CPSORT, Model 204 does not attempt to take a
checkpoint at the beginning and end of HLI jobs.

CPSORT is useful for roll back recovery in the IFAM2 multiuser environment,
because it marks the beginning and end of each HLI job.

CPSORT processing steps

See the following processing flow charts for a detailed description of the steps
involved in CPSORT checkpointing:

• “Checkpoint processing steps: CPSORT main flow” on page 16-16

• “Checkpoint processing steps: CPTQ timer” on page 16-13

• “Checkpoint processing steps: CPTO timer” on page 16-14

Parameter Description

CPSORT
(Checkpoint Sign-On
Retry)

Number of times that Model 204 attempts to take a
checkpoint at the beginning (the initial IFSTRT call) and
end (an IFFNSH call) of HLI jobs.

CPTQ Number of seconds to wait for IFSTRT threads to quiesce
before timing out a checkpoint

CPTO Number of seconds to wait for IFDIAL threads, or User
Language threads in IFAM2, to quiesce before timing out a
checkpoint
Host Language Interface Programming Guide 16-9

• “Checkpoint processing steps: CPSORT main flow” on page 16-16

Refer to the Model 204 System Manager’s Guide for more information about
the CPSORT parameter.
16-10 Model 204

IFCHKPT checkpointing

The IFCHKPT call provides a mechanism for initiating attempts to take
checkpoints from within an HLI application.

You can use IFCHKPT in IFAM2 and IFAM4 applications. You cannot issue a
call to IFCHKPT in an IFAM1 application.

Differences in checkpointing procedure

There are differences in the procedure that is used for checkpointing depending
on whether IFCHKPT is issued on a multiple cursor IFSTRT thread or on single
cursor IFSTRT threads.

For example, in a multithreaded IFSTRT application, each single cursor
IFSTRT thread that is updating must indicate to Model 204 that it is quiescing
in preparation for an attempt to take a checkpoint. A single cursor IFSTRT
thread performing update processing prevents checkpoints from occurring
unless the thread specifically requests a checkpoint by issuing an IFCHKPT
call.

Refer to the Model 204 Host Language Interface Reference Manual for a
description IFCHKPT and detailed information about using the IFCHKPT call
on different types of IFSTRT threads.

IFCHKPT processing steps

See the following processing flow charts for a detailed description of the steps
involved in IFCHKPT checkpointing:

• “Checkpoint Processing steps: IFCHKPT main flow” on page 16-18

• “Checkpoint processing steps: CPTQ timer” on page 16-13

• “Checkpoint processing steps: CPTO timer” on page 16-14

• “Checkpoint processing steps: IFCHKPT time-out” on page 16-19

Refer to the Model 204 Host Language Interface Reference Manual for more
information about IFCHKPT.
Host Language Interface Programming Guide 16-11

Checkpoint processing steps: CPTIME main flow

Figure 16-1. CPTIME checkpointing: main processing flow

 T1

 CT.1

Any

 CPTIME minutes
remaining

?

Inhibit
 new update units

NO (CPTIME expired)

Any
 IFSTRT threads

updating
?

NO

YES

Any
IFDIAL threads

updating
?

NO

 CT.2

T2
YES

Take a checkpoint

Reset CPTIME timer

 CT.3

Allow new update units

YES

Go to: CPTQ timer,
 on next page

Go to: CPTO timer,
 page 16-17

BEGIN
CPTIME (CT) CPTIME

• Attempts to take a checkpoint
at regular intervals
(clock-driven operation)

• Controlled by user zero
parameters:
- CPTIME
- CPTQ
- CPTO
16-12 Model 204

Checkpoint processing steps: CPTQ timer

Figure 16-2. CPTQ checkpointing timer processing flow

CT.0

Wait
for timer to expire or for
an update unit to end

CPTQ
time expired

?

NO

YES

 T1

Start
CPTQ timer

any update unit
in progress

?

NO

YES

 OR

OR CS.0

Go to: CPTIME time-out
 page 16-18

Go to: CPSORT time-out
 page 16-20

CPTQ

• Starts timer for
IFSTRT threads

• CPTQ is number
of seconds to wait
before timing out
checkpoint

CK.0 Go to: IFCHKPT time-out
 page 16-22

CT.1

Return to:
CPTIME
page 16-15

CS.2

Return to:
CPSORT
page 16-19

CK.1

Return to:
IFCHKPT
page 6-21
Host Language Interface Programming Guide 16-13

Checkpoint processing steps: CPTO timer

Figure 16-3. CPTO checkpointing timer processing flow

OR

 T2

Start
CPTO timer

Wait
for timer to expire or for
an update unit to end

CPTO
time expired

 ?

NO

YES

 any update unit
in progress

 ?

NO

YES

CPTO

• Starts timer for
IFDIAL threads

• CPTO is number
of seconds to wait
before timing out
checkpoint

CT.0

OR CS.0

Go to: CPTIME time-out
 page 16-18

Go to: CPSORT time-out
 page 16-20

CK.0 Go to: IFCHKPT time-out
 page 16-22

CT.2

Return to:
CPTIME
page 16-15

CS.3

Return to:
CPSORT
page 16-19

CK.2

Return to:
IFCHKPT
page 16-21
16-14 Model 204

Checkpoint processing steps: CPTIME time-out

Figure 16-4. CPTIME checkpointing: time-out processing flow

"Remember"
(Determine outcome of

last checkpointing attempt)

Last attempt
successful

?

NO (Last attempt to take CPTIME checkpoint failed)

Any
CPTIME minutes

remaining
?

NO

 CT.3

 CT.0

Time-out
CPTIME checkpoint

End of
update unit

 ?

NO

YES

YES

YES

System
is quiescent

 ?

YES

NO (Updating
 in progress)

Take a checkpoint

Return to: CPTIME
 page 16-15

CPTIME time-out

• Time-out occurs if CPTQ
or CPTO timer expires

• Time-out uses remaining
CPTIME minutes to take
checkpoints
Host Language Interface Programming Guide 16-15

Checkpoint processing steps: CPSORT main flow

Figure 16-Figure 16-5. shows the main flow of CPSORT checkpointing. The
CPSORT parameter must be set to a value that is not equal to 0 for CPSORT
processing to be enabled; a call to IFSTRT or IFFNSH, as described on
page 16-9, initiates the CPSORT process shown below.

Figure 16-5. CPSORT checkpointing: main processing flow

 T1

 CS.2

Inhibit new update units

Any
 IFSTRT threads

updating
 ?

NO

YES

Any
IFDIAL threads

updating
 ?

NO

 CS.3

T2
YES

Take a checkpoint

Allow new update units

 CS.4

Go to: CPTQ timer,
 page 16-16

Go to: CPTO timer,
 page 16-17

BEGIN
 CPSORT (CS)

 CS.1

COUNT = 1

CPSORT

• Attempts to take a checkpoint
upon execution of:
- initial IFSTRT in an HLI job
- an IFFNSH in any HLI job
(HLI calls drive operation)

• Controlled by user zero
parameters:
- CPSORT
- CPTQ
- CPTO
16-16 Model 204

Checkpoint processing steps: CPSORT time-out

Figure 16-6. CPSORT checkpointing: time-out processing flow

COUNT
 > CPSORT

?

 CS.0

Increment CPSORT counter
[COUNT = COUNT + 1]

Time-out
CPSORT checkpoint

CS.4

YES

NO
CS.1

Return to: CPSORT
 preceding page

Return to: CPSORT
 preceding page

CPSORT time-out

• Increments CPSORT
counter if CPTQ or CPTO
timer expires

• Time-out occurs if specified
number of CPSORT
attempts is not exceeded
Host Language Interface Programming Guide 16-17

Checkpoint Processing steps: IFCHKPT main flow

Figure 16-7. IFCHKPT checkpointing: main processing flow

 T1

 CK.1

IFCHKPT

function code
= 3 ?

Inhibit
 new update units

YES (see: * multi-threaded job)

Any
 IFSTRT threads

updating
?

NO

YES

Any
IFDIAL threads

updating
?

NO

 CK.2

T2
YES

Take a checkpoint

Allow new update units

Return (to HLI job)
completion code = 1

NO

Go to: CPTQ timer,
 on page 16-16

Go to: CPTO timer,
 page 16-16

BEGIN
IFCHKPT (CK) IFCHKPT

• Attempts to take a checkpoint
for IFCHKPT function code of 3

• Controlled by user zero
parameters:
- CPTQ
- CPTO

* For a multi-threaded HLI job,
all other threads must first be
quiesced by IFCHKPT call
issued with function code of 1

END
16-18 Model 204

Checkpoint processing steps: IFCHKPT time-out

Figure 16-8. IFCHKPT checkpointing: time-out processing flow

 CK.0

Time-out
IFCHKPT checkpoint

Return (to HLI job)
completion code = 2

(timed out)

END

IFCHKPT time-out

• Time-out occurs if CPTQ or
CPTO timer expires

• Returns completion code
of 2 to HLI job

Allow new update units
Host Language Interface Programming Guide 16-19

16-20 Model 204

Index
Symbols

%%variable
errors using 7-24
example of how to use 7-23 to 7-24
specifying field name 7-22

%VARBUF HLI call parameter 7-18
%variable

assignment of values 7-20 to 7-21
definition 7-17
error referencing 7-21
example of how to use 7-19 to 7-20
HLI call parameters 7-17
naming rules 7-18
QTBL entries 12-9
specifying 7-18
user work area table entries 12-4
using 2-18
VTBL entries 12-13
when to use 7-18

%VARSPEC HLI call parameter 7-19
&IFABEND parameter, CICS abend handling 14-7

A

ABEND condition
system wait time exceeded 9-4

Access method, user 5-5
ADD field access security option 7-13 to 7-14
Adding a record to a list 2-6
Addressing CICS areas

COBOL example 14-4
COBOL2 example 14-5 to 14-6

Application Subsystem facility
using 3-5

AT-MOST-ONE
access violations 7-13
field access violations 7-16
field attribute 7-9

audience xiii
Audit trail

log 16-4
using 4-4

AUDIT204 utility 16-4

B

Backing out a transaction 15-19
Backout

log 15-5, 15-18, 15-20
mechanism 15-18

Backoutable update unit 15-3
BATCH204 job, used for recovery 16-3
Before-images 16-5
BINARY field

compressible value violations 7-15
nonnumeric data violations 7-16
storage characteristics 7-10

Binary integer 4-3
Boolean operators 8-19
BRESERVE file parameter 5-6
Buffer sizing 5-4, 5-5

C

Cancelling a HLI call
update backout 15-19

CCA Customer Support
contacting xiii

CCA datasets
required for IFAM1 and IFAM4 jobs 13-3

CCAAUDIT, MODEL 204 audit trail file 13-11, 16-4
CCAGRP, MODEL 204 permanent group file 13-10
CCAIN input file, using 5-5
CCAJRNL, MODEL 204 journal file 13-11, 15-5,

16-4
CCAPRINT, MODEL 204 print file 13-4
CCASERVR, MODEL 204 server swapping file

12-3, 13-7
CCASNAP, MODEL 204 dump storage file 13-8
CCASTAT, MODEL 204 security file 13-9
CCATEMP, MODEL 204 temporary work file 9-19,

13-5, 15-20
Character comparison 8-17
Character strings 5-4
CHECKPOINT command 16-6
Checkpoint facility

components 16-5
Checkpointing
Host Language Interface Programming Guide Index-1

multiple cursor IFSTRT thread 1-9
Checkpoints, marker records 13-12, 16-5
CHKPOINT, MODEL 204 checkpoint file 13-12

use in recovery ?? to 16-3, 16-5
CICFG copy member 14-3, 14-7
CICS

command-level program 14-11
macro-level program 14-9
releasing resources 14-7
terminal I/O points 10-11

Clearing a list 2-6
CLOSE TERMINAL syntax 3-9
Closing a cursor 1-8
COBOL language indicator 1-7, 1-10, 1-13
CODED field attribute 7-10
Committing updates 15-5, 15-16 to 15-17
Communication buffer size, IFDIAL thread 5-5
Compilation

naming 2-14
usage requirements 2-13

Compiled IFAM facility
calls that share compilations 2-16
calls, different forms 2-15
description 2-13
using 2-8

Compile-only calls
using 2-15

Completion return code
checking 1-14, 3-6, 3-17
enqueueing conflict 9-4, 10-7
field-level security violations 7-13
update backout 15-19
using 4-3

Compression field violations 7-13, 7-15
Constraints log 15-5, 15-18, 15-20
Conventions, notation xiv
CPSORT

checkpointing 16-9 to 16-10, 16-16 to 16-17
MODEL 204 user zero parameter 16-3, 16-6,

16-9
CPTIME

checkpointing 16-12 to 16-15
MODEL 204 user zero parameter 16-3,

16-6 to 16-8
CPTO, MODEL 204 user zero parameter 16-7, 16-9
CPTQ, MODEL 204 user zero parameter 16-7, 16-9
CPU time, reducing 2-13
CRAM channels

CICS, closing 14-7
hung 14-7

CURFILE parameter 5-6, 6-6
CURREC parameter 6-6
Current file

default 1-7

Current record
identifying 6-6
multiple cursor IFSTRT thread 6-7
single cursor IFSTRT thread 1-10, 6-7

Current record set
single cursor IFSTRT thread 1-10

Current set
multiple cursor IFSTRT thread 2-3
single cursor IFSTRT thread 2-3

Current value
single cursor IFSTRT thread 1-10

Current value set
single cursor IFSTRT thread 1-10

Cursor
naming 2-8
processing 2-8
using 1-7

D

Data area 5-6, 6-3, 8-5
DATA specification

for %%variable 7-23
for %variables 7-20

Database recovery 16-5
Debugging application programs 16-4
DEFERRABLE field attribute 7-9
Dequeueing actions 9-4
Device type, user 5-5
DFHEISTG storage area 14-3
Disk I/O, reducing use 2-13
Disk space, reducing 6-4
DRESERVE file parameter 5-6

E

EDIT specification
for %variables 7-20
STBL entries 12-10

Ending the current transaction 15-18 to 15-19
Enqueueing actions

checking completion return code 9-4
Enqueueing conflicts

minimizing 9-5, 9-20, 15-16
multi-threaded transactions 15-15
occurrence 10-3
operating system 9-7
resolving 10-5

Entry order file 6-3
Equality condition

character comparison 8-7
numeric values 8-10

ERASE parameter 7-3, 8-22
Index-2 Model 204

Exclusive lock on records 9-3, 9-14, 9-16, 9-17, 10-4
releasing 15-16 to 15-17

EXEC statement, HLI job 5-4
Execute-only calls

using 2-15
Exponential notation 8-13

F

FEW-VALUED field attribute 7-10
Field

access violations 7-13
attributes

operational characteristics 7-7 to 7-9
storage characteristics 7-10 to 7-11
when to assign 7-7

compression violations 7-15
definition 7-3
multiply occurring 7-3
names

examples 7-4
referencing 7-22

naming rules 7-3 to 7-4
security 7-11
values

examples 7-5
rules for forming 7-5

Field name variable, see %%variable
Field-level security

access violations 7-13
using 11-3

File
definition 6-3
entry order 6-3
hashed key 6-4
parameters 5-6
password security 11-3
sorted 6-4
sorted, overflow areas 5-6
unordered 6-3

File group
CCATEMP file usage 13-5
definition 6-4
permanent, using CCAGRP file 13-10
security 11-3

File pages, MODEL 204 13-12
File problems

automatic backout of incomplete updates 15-19
FILE$ condition 8-14
FILEMODL parameter 6-5
Find specification

combining conditions 8-19
equality condition 8-17

mismatch, operator and value type 8-16
selecting all records 8-3

FIND$ condition 8-14
First-Normal Form (1NF) file model 6-5
FISTAT file parameter 5-6
FLOAT field

equality comparison in find specification 8-17
invalid data 7-16
storage characteristics 7-10

FLUSH parameter 7-3, 8-22
FOPT file parameter 5-6, 9-17, 15-18
Found set

releasing locks 15-17
FRCVOPT file parameter 5-6
FRV field

creating value sets 2-5
description 7-9
enqueueing 9-8

FTBL file group table
LFTBL parameter 12-4
types of entries 12-6

G

Group file context
field-level security violations 7-14
using fields 7-12

H

Handling system prompts 3-3
Hashed key file 6-4
HLI call parameters

maximum length 5-4

I

IFABXIT call
closing CRAM channels 14-7
when to use 14-10, 14-11

IFAM1
CCAPRINT file 13-4
CCASNAP file 13-8
CCATEMP file 13-5
CPTIME parameter, specifying 16-7
login security 11-3
roll back recovery 16-3
server area 12-4
specifying system parameters 5-4
specifying user zero parameters 5-5
transactions 15-10

IFAM2
CICS abend handling 14-7
Host Language Interface Programming Guide Index-3

CPSORT checkpointing 16-9
IFCHKPT call, using 16-11
login security 11-3
multi-threaded transaction

description 15-14
server area 12-4
transactions 15-11 to 15-12

IFAM4
CCAIN input file 5-5
CCAPRINT file 13-4
CCASERVR file 13-7
CCASNAP file 13-8
CCATEMP file 13-5
CPTIME parameter, specifying 16-7
IFCHKPT call, using 16-11
login security 11-3
multi-threaded transaction

description 15-14
server area 12-4
specifying system parameters 5-4
transactions, description 15-13

IFAMBS system parameter 5-4
IFATTN call

using 3-18
IFBOUT call

ending an update unit 15-4, 15-7
issuing 15-19
multi-threaded transactions 15-14

IFBREC call
ending an update unit 15-8
record locking 9-16
storing field values 7-15
using 6-7, 7-17

IFCHKPT call 16-6
checkpointing 16-18 to 16-19
ending an update unit 15-4
using 16-11

IFCLOSE call
ending an update unit 15-7

IFCLST call
using 2-6, 7-17
when to use 10-11

IFCMMT call
coding example 9-20
ending an update unit 15-4, 15-7
ending update units 1-5
multi-threaded transactions 15-14
releasing record locks 9-18, 9-20
when to use 10-11, 15-16 to 15-17,

15-20 to 15-23
IFCMTR call

ending an update unit 15-4, 15-7
ending update units 1-5
releasing record locks 9-16, 9-22

IFCOUNT call
VTBL entries 12-12

IFCSA call
when to use 14-7, 14-9, 14-11

IFCTO call
QTBL entries 12-8
record locking 9-15
using 7-17, 7-22

IFDALL call
ending an update unit 15-8
record locking 9-16, 9-17
using 2-10

IFDELF call
ending an update unit 15-7

IFDFLD call
ending an update unit 15-7
field-level security 11-3
using 7-7, 7-13
when to use 10-11

IFDIAL application
guidelines 3-17

IFDIAL call
temporary storage queue 14-6

IFDIAL thread
data transfer length 5-5
IFAM2 transactions 15-11 to 15-12
issuing MODEL 204 commands 3-8
multi-threaded transactions 15-14
record locking 9-3
sample coding sequence 1-13
sending and receiving images 3-8 to 3-9
starting 1-13, 3-4
transferring procedures 3-8
using 3-3

IFDREC call
ending an update unit 15-8
record locking 9-16, 9-17, 15-22
using 2-10, 6-6

IFDSET call
ending an update unit 15-8
record locking 9-14, 15-22
using 6-6

IFDTHRD call
ending an update unit 15-7
ending update units properly 1-5

IFDVAL call
ending an update unit 15-8
record locking 9-16, 9-17
STBL entries 12-10
using 2-10

IFENQ call
wait time 9-4

IFENQL call
wait time 9-4
Index-4 Model 204

IFENTPS link module 14-3, 14-9, 14-11
IFEPRM call

using 5-3
IFFAC call

QTBL entries 12-8
record locking 9-8, 9-18
using 2-3, 2-17, 7-17

IFFDV call
NTBL entries 12-7
QTBL entries 12-8
record locking 9-8
using 2-5, 7-17
VTBL entries 12-12

IFFILE call
ending an update unit 15-8
logical inconsistencies 15-23
record locking 15-22
STBL entries 12-10

IFFIND call
CCATEMP file usage 13-5
coding sample 2-3
QTBL entries 12-8
record locking 9-8, 9-18
STBL entries 12-10
TTBL entries 12-11
using 2-3, 2-17, 7-17, 7-22, 7-24
VTBL entries 12-12
with Compiled IFAM 2-14

IFFLUSH call
using 2-13
when to use 12-5

IFFNDX call
record locking 9-9 to 9-12, 9-18
using 2-3, 7-17, 7-22, 15-23
wait time 9-4

IFFNSH call
closing CRAM channels 14-7, 14-9, 14-11
CPSORT checkpointing 16-6, 16-9
ending an update unit 15-4, 15-7
releasing CICS resources 14-7, 14-9, 14-11

IFFRN call
QTBL entries 12-9
record locking 9-15
using 2-8, 2-10, 6-7
VTBL entries 12-13

IFFTCH call
coding sample 2-6, 2-10, 2-17
dequeueing action 9-18
field-level security violations 7-14
QTBL entries 12-8
using 2-10, 6-7, 7-12, 7-17, 7-22, 7-24

IFFWOL call
record locking 9-12
using 2-3, 7-17

when to use 9-13
IFGERR call

using 4-4, 7-13, 10-7, 15-19
IFGET call

field-level security violations 7-14
QTBL entries 12-8
record locking 9-15
using 2-16, 6-7, 7-12, 7-17, 7-22, 7-24
VTBL entries 12-13

IFGETV call
QTBL entries 12-9

IFGETX call
record locking 9-16
using 7-17
wait time 9-4

IFHNGUP call
CICS abend handling 14-7
using 1-14

IFINIT call
ending an update unit 15-7
using 6-6

IFLIST call
using 2-6

IFLOG call
when to use 11-3

IFMORE call
record locking 9-15
using 2-16, 7-12, 7-17, 7-22

IFMOREX call
record locking 9-16
using 7-17
wait time 9-4

IFNFLD call
ending an update unit 15-7
when to use 10-11

IFOCC call
record locking 9-15
using 2-10, 7-17, 7-22

IFOCUR call
coding sample 2-6, 2-10
QTBL entries 12-9
STBL entries 12-10
using 2-10, 7-17
VTBL entries 12-13

IFOPEN call
file enqueueing 9-6
file password security 11-3
using 6-6

IFOPENX call
file enqueueing 9-6
wait time 9-4

IFPOINT call
using 6-7

IFPROL call
Host Language Interface Programming Guide Index-5

using 2-6, 2-10
IFPROLS call

coding sample 2-6
using 2-6

IFPS link module 14-4
IFPUT call

field-level security violations 7-14
QTBL entries 12-8
record locking 9-16, 9-17
STBL entries 12-10
storing field values 7-15
using 2-16, 7-17, 7-22, 7-24

IFREAD call
checking return code 1-14, 3-6
message descriptor 3-14
using 1-13, 3-3

IFRELA call
dequeueing action 9-19
releasing record locks 9-8, 9-16

IFRELR call
coding sample 2-3
dequeueing action 9-19
releasing record locks 9-8, 9-18
when to use 10-11

IFRFLD call
ending an update unit 15-7
using 7-7, 7-13
when to use 10-11

IFRNUM call
using 2-10

IFRPRM call
ending an update unit 15-7
using 5-3, 5-6

IFRRFL call
coding sample 2-6
using 2-6, 2-10

IFSETUP call
using 5-4

IFSKEY call
using 7-17

IFSORT call
CCATEMP file usage 13-5
QTBL entries 12-9
using 6-3, 7-17
VTBL entries 12-13

IFSPRM call
ending an update unit 15-7

IFSRTV call
QTBL entries 12-9
VTBL entries 12-13

IFSTHRD call
using 1-11

IFSTOR call
QTBL entries 12-9

record locking 9-16, 9-17
storing field values 7-15
using 2-8, 2-10, 6-7, 7-17
VTBL entries 12-13

IFSTRT application
handling update units 1-11

IFSTRT applications
multithreaded 1-11

IFSTRT call
checking return code 4-3
CPSORT checkpointing 16-6, 16-9
handling update units 15-4
login parameter 11-3
temporary storage queue 14-6
update units 15-4
using 5-4

IFSTRT thread
record locking 9-3

IFSTRT threads
comparing types 1-5
functionality 1-4 to 1-12

IFUPDT call
field-level security violations 7-14
QTBL entries 12-8
record locking 9-16, 9-17, 9-18
storing field values 7-15
using 2-10, 2-17, 7-17, 7-22, 7-24

IFUPDTE call
coding sample 2-17

IFUTBL call
using 5-3, 5-5, 12-4

IFWRITE call
checking return code 1-14, 3-6
login 11-3
using 1-13, 3-3

images, MODEL 204 3-9
IN ORDER clause 12-10
IN RANGE clause 8-12, 8-18
Incomplete updates

backing out 15-18 to 15-19
Index area, file 5-6, 6-3, 8-5
Index updates, deferring 10-11
INMRL option, buffer sizing 5-5
Input Buffer Length, see LIBUFF
Internal record number 6-6
INVISIBLE field attribute 7-9, 7-12
IODEV statements

in online run 1-3
specifying user zero parameter 5-5

IS operator 8-18
IS PRESENT condition 8-14
Issuing MODEL 204 commands, IFDIAL thread 3-8
Index-6 Model 204

J

Job control statement, CCA dataset 13-3
Journal log 16-4

K

KEY field
inconsistencies 7-12
index area 6-3
index search 8-5
operational characteristics 7-8

L

LAUDIT system parameter 4-4, 5-4
LENGTH field

access violations 7-13, 7-14
storage option 7-11

LEVEL field security option 7-11
LFTBL parameter, FTBL table 12-4
LIBUFF, MODEL 204 system parameter 5-4
Line-at-a-time interface 1-13, 3-3
List processing 2-6, 12-13
LIST specification

for %variable 7-20
LIST$ condition 8-15
LNTBL parameter, NTBL table 12-4
LOBUFF, MODEL 204 system parameter 5-4
Lock Pending Updates

file 15-5
LPU exclusive lock 9-20
option 15-16, 15-18
pool 9-17, 15-17

Locking conflicts, see Enqueueing conflicts
Locking mechanism 15-16
LOGCTL command 1-13
Logical inconsistencies

multi-threaded transactions 15-14
processing LPU files 15-22

Logical Line Output Buffer Length, see LOBUFF
Login

account name 1-7
password 1-7
security 11-3
user ID 11-4

Login account name 1-10
LOGIN command 1-13
LOGWHO command 1-13
LPU, see Lock Pending Updates
LQTBL parameter, QTBL table 12-4
LSTBL parameter, STBL table 12-4
LTTBL parameter, TTBL table 12-4

LVTBL parameter, VTBL table 12-4

M

MANY-VALUED field attribute 7-10
MAX user zero parameter 5-5
Message descriptor, IFREAD 3-14
Model 204

electronic documentation library xiii
MONITOR command 1-13
Multiple cursor IFSTRT thread

comparison to standard cursor IFSTRT thread
1-5

found set enqueueing 9-8
IFAM2 transactions 15-11
IFCHKPT call, using 16-11
recommendation for using 1-9
sample coding sequence 1-7
starting 1-7
transactions 15-4
update units 15-7
using cursors 2-10

Multiple occurrences of a field 7-3
Multi-threaded application

IFAM2 1-9
sample coding sequence 1-11

Multi-threaded transaction
IFAM2 15-11
IFAM4 15-13

N

Name=value pair
numeric values 8-10
stored fields 7-3

Negated condition
numeric values 8-11

NON- DEFERRABLE field attribute 7-9
NON-CODED field attribute 7-10

violations 7-15
NONEXISTENT RECORD message 9-13
NON-FRV field attribute 7-9
NON-KEY field attribute 7-8, 7-12
Non-numeric data, field violations 7-15
NON-ORDERED field attribute 7-8
NON-RANGE field attribute 7-12, 8-9
NON-UNIQUE field attribute 7-9
Notation conventions xiv
NSERVS parameter, used for server swapping 13-7
NTBL names table

LNTBL parameter 12-4
stored compilations 2-13

NUMERIC RANGE field
Host Language Interface Programming Guide Index-7

inconsistencies 7-12
index search 8-5
operational characteristics 7-8
specifying selection criteria 8-9

Numeric range selection criteria 8-9 to 8-10
NUMERIC VALIDATION

file model 6-5
invalid data 7-10, 7-16

NUSERS parameter, used for server swapping 13-7

O

OCCURS field
access violations 7-13, 7-15
storage option 7-11

ON attention function, using 3-18
ON units, User Language 10-7
OPEN TERMINAL syntax 3-9
OPENCTL file parameter 5-6
Opening a cursor 1-8
Opening files 15-14
ORDERED field

creating value sets 2-5
enqueueing 9-8
index search 8-5
operational characteristics 7-8

ORDERED NUMERIC field attribute 8-9
OUTMRL option, buffer sizing 5-5

P

PAD field storage option 7-11
Page size, MODEL 204 13-5
Parameters

system 5-4
using 5-3

Partner programs, IFDIAL communications 3-3
Password security 11-3
Pattern matching 8-21
Percent variables, see %variables
Placing records on a list 2-6
POINT$ condition 8-14
POP command, macro-level CICS program 14-8
POP HANDLE command, command-level CICS

program 14-8
Positioning a cursor 2-10
Preallocated fields

LENGTH violations 7-14
storage options 7-11
using 6-6

Precompiled specifications, using 2-18, 12-4
Pre-images 16-5
PRIVDEF file parameter 5-6

Programming languages
using xiii

Pseudo-conversational wait 14-7
PUSH command, macro-level CICS program 14-8
PUSH HANDLE command, command-level CICS

program 14-8

Q

QTBL quad table
entries 12-8 to 12-9
LQTBL parameter 12-4
stored compilations 2-13

Quadruples, see QTBL quad table
Quiescent system 16-5
Quotation marks, using 7-5

R

Range condition
character comparison 8-8
comparisons, order performed 8-18
numeric values 8-9 to 8-10

RANGE field attribute 7-8
RCVOPT, MODEL 204 system parameter 16-5
READ field access security option 7-13 to 7-14
READ IMAGE syntax 3-9
Read-only

file passwords 15-14
IFSTRT threads 1-10, 9-6, 15-4, 15-14

Receiving a line of output from MODEL 204 3-3
Record

definition 6-6
security 11-3

Record locks
releasing 2-6, 15-14, 15-19

Record set
multiple cursor IFSTRT thread 1-8

Recovery
CCAJRNL file, using 13-11
CHKPOINT file, using 13-12
roll back ?? to 16-3
update units 15-6

Releasing records 10-11
Removing a record from a list 2-6
REPEATABLE field attribute 7-9
Reserved word, in field name 7-3
RESET command 5-3
Resource locking facility 9-3
Resource locks

file 9-6
operating system 9-6
releasing 15-14
Index-8 Model 204

Restarting a user
update backout 15-19

RETCODE, see Completion return code
Retrieving data

IFFTCH, using 1-8
IFGET, using 1-11

RK lines, in audit trail 4-4

S

Scratch file, see CCATEMP
Secondary datasets, CCATEMP 13-6
Security, MODEL 204

CCASTAT file 13-9
field level 7-11

SELECT field access security option 7-13 to 7-14
Selection criteria

character values 8-7
HLI calls that perform find function 8-3
numeric values 8-9
record set 2-3
using field name

inconsistencies 7-12
Sending and receiving MODEL 204 images 3-8
Server area 5-5
Server swapping, see CCASERVR
SERVSIZE user zero parameter 12-4
SFGE$ condition 8-14
Share lock on records 9-3, 9-8, 9-15
Short character string

compilation names 2-14
cursor name 2-8

SICK RECORD message 9-13
Single cursor IFSTRT thread

comparison to multiple cursor IFSTRT thread
1-5

CPSORT checkpointing 16-9
found set enqueueing 9-8
functionality 1-10 to 1-11
IFCHKPT call, using 16-11
multi-threaded transaction

description 15-14
sample coding sequence 1-10
transactions 15-4
update units 15-7 to 15-8

Sorted file 6-4
SRE exclusive record lock 9-16
STBL character string table

entries 12-10
LSTBL parameter 12-4
stored compilations 2-13

Stored procedure
coding sample 3-9

using 3-5, 3-8
STRING field attribute 7-10
Switching threads 1-11
SYSOPT system parameter 4-4, 5-4, 13-10
System

messages, handling 3-3, 3-18
messages, in CCAJRNL 16-4
parameters 5-4
prompt strings, handling 3-18

T

Table full condition, user work area 12-5
Tables, MODEL 204

server area 5-5
user work area 12-3

TBO, see Transaction Backout
Temporary storage queue 14-6
Terminal

correction characters 7-3
emulation interface 3-3
security 11-4

Terminal I/O
processing 3-9, 15-6

Thread connection to MODEL 204 1-3
Thread type parameter

specifying 1-10
Timed checkpointing, using CPTIME 16-7 to 16-8
Transaction

backing out 15-5
committing 9-17
definition 15-3

Transaction Backout
facility 15-18
file 15-16
requirements 15-18

Transaction work area (TWA)
CICS requirements 14-4

Transferring procedures
IFDIAL thread 3-8

Transmitting a line of input to MODEL 204 3-3
TTBL temporary work table

entries 12-11
LTTBL parameter 12-4

U

UNIQUE field
access violations 7-13, 7-15
attribute description 7-9

Unordered file 6-3
UPDATE AT END fields 7-11
UPDATE field access security option 7-13 to 7-14
Host Language Interface Programming Guide Index-9

UPDATE IN PLACE fields 7-11
Update privileges

single cursor IFSTRT thread 1-10
Update processing 7-11

guidelines 1-9
IFPUT, using 1-11

Update units 15-4, 15-5
ending on the current thread 1-5
in IFSTRT applications 1-11
single cursor IFSTRT thread 15-4

Updating calls 15-3
User environment control parameters 5-5
User Language

keyword, using 2-9, 2-14
procedure, submitting 3-5
request, submitting 3-4

User table parameters 5-5
User work area

CCASERVR file 13-7
controlling 5-4
setting user table parameters 5-5
table sizing 12-4

User zero parameters, see User environment con-
trol parameters

UTABLE command 5-3

V

Value set
multiple cursor IFSTRT thread 2-5
single cursor IFSTRT thread 2-5

Variable buffer specification 2-18
VIEW command 5-3
VISIBLE field attribute 7-8, 7-12
VTBL compiler table

stored compilations 2-13
VTBL compiler variable table

entries 12-12 to 12-13
LVTBL parameter 12-4

W

Wait time, enqueueing 9-4
WRITE IMAGE syntax 3-9
Index-10 Model 204

	Preface
	Part I Basic HLI Processing
	1 HLI Threads
	In this chapter
	Overview
	For more information

	Types of HLI threads
	IFSTRT and IFDIAL threads

	IFSTRT threads
	Different types of IFSTRT threads

	Comparison of multiple and single cursor IFSTRT threads
	Multiple cursor IFSTRT threads
	Starting a multiple cursor IFSTRT thread
	Sample coding sequence
	Advantages of a multiple cursor IFSTRT thread
	CCA recommends using a multiple cursor IFSTRT thread

	Single cursor IFSTRT threads
	Read-only or update privileges
	Sample coding sequence using a single cursor IFSTRT thread
	Multithreaded IFSTRT application
	Sample coding sequence for a multithreaded IFSTRT application

	IFDIAL thread line-at-a-time interface
	Starting an IFDIAL thread
	Sample coding sequence
	Checking the IFREAD and IFWRITE return codes

	2 IFSTRT Processing
	In this chapter
	Overview
	For more information

	Using record sets
	Creating a record set
	Current record set

	Using value sets
	Creating a value set
	Current value set

	Using lists
	Creating a list
	Example of list processing

	Using cursors on a multiple cursor IFSTRT thread
	Opening and closing a cursor
	Naming a cursor

	Cursor processing
	Positioning a cursor
	Example of cursor processing

	Using the compiled IFAM facility
	Advantage of using Compiled IFAM calls
	Stored compilations and server tables
	Compilation name parameter
	Naming a compilation
	Three forms of Compiled IFAM calls
	Sharing a compilation
	Example of a shared compilation
	Using variables with precompiled specifications

	3 IFDIAL Processing
	In this chapter
	Overview
	For more information

	Terminal type interface
	IFDIAL thread
	Communication between Model�204 and an IFDIAL thread

	Sample call sequences
	Establishing an IFDIAL connection
	Submitting a User Language request
	Invoking a stored User Language procedure
	Using the Model�204 Application Subsystem facility
	Checking IFWRITE and IFREAD return codes

	Using stored procedures
	Operations against the database

	Using stored procedures for image processing
	Sending and receiving Model�204 images
	Example of a stored procedure used to process images
	Example of IFDIAL application that processes images

	Using a special purpose subroutine
	Sample subroutine to convert IFREAD flags

	Coding guidelines for IFDIAL applications
	Designing your IFDIAL application
	Checking the Model�204 completion return code
	Writing special purpose subroutines
	Formatting data
	Sending and receiving Model�204 images
	Handling terminal messages and prompt strings
	Use IFATTN to activate ON attention
	Using stored procedure calls
	Using an application subsystem

	4 Using Completion Return Codes
	In this chapter
	Overview
	For more information

	Using completion return codes for HLI calls
	Checking the completion return code

	Using the audit trail

	Part II Model 204 Database Processing
	5 Model 204 Parameters
	In this chapter
	Overview
	For more information

	Model 204 Parameters
	System parameters
	Setting system parameters for an HLI job

	User environment control parameters
	Buffer size and IODEV parameters for an IFDIAL thread
	User table parameters

	File parameters
	CURFILE parameter and the current file

	6 Model 204 Files and Records
	In this chapter
	Overview
	For more information

	Data files
	Entry order file
	Unordered file
	Sorted file
	Hashed key file
	File groups
	File model options

	Records
	Internal database record number
	Current record and the current file
	No current record
	Current record on a multiple cursor IFSTRT thread
	Current record on a single cursor IFSTRT thread
	Specifying a record number

	7 Model 204 Fields and Variables
	In this chapter
	Overview
	For more information

	Field names and values
	Rules for naming fields
	Examples of valid field names
	Examples of invalid field names
	Forming field values
	Examples of valid field values
	Using quotation marks

	Field definitions and attributes
	Defining fields
	When to assign field attributes
	Field attributes
	Operational characteristics of a field
	Storage characteristics of a field
	Storage options for preallocated fields
	Field updating options
	Field security option

	Field definitions for group files
	KEY and NONKEY inconsistencies
	NUMERIC RANGE and NONRANGE inconsistencies
	VISIBLE and INVISIBLE inconsistencies

	Field access violations
	Field-level security violations
	Model�204 handles field-level violations
	Field-level violations for IFFTCH, IFUPDT, IFGET, and IFPUT
	LENGTH violations
	OCCURS violations
	Compression violations
	UNIQUE violations
	NUMERIC VALIDATION violations
	AT-MOST-ONE violations

	Using %variables
	Specifying a %variable name
	Example of when to use a %variable
	Specifying the %variable parameters
	Using %variables in EDIT and LIST specifications
	Example of using a %variable
	Assignment of %variables
	Assignment of %variables for HLI threads

	Using field name variables
	Specifying a field variable name (%%variable)
	When to use a field name variable
	Example of using %%variables
	Field name variable errors

	8 Find Criteria for Model 204 Data
	In this chapter
	Overview
	For more information

	Find criteria in HLI calls
	Specifying all records to be selected
	Specifying particular records to be selected

	File search operations
	Index search
	Direct data search
	File search for a group
	Summary of file search operations

	Specifying find criteria: character values
	Specifying find criteria using character values
	Character find criteria with an equality condition
	Character find criteria with a range condition

	Specifying find criteria: numeric values
	Rules for specifying numeric range find criteria
	Numeric find criteria with an equality condition
	Fieldname=value pairs for numeric find criteria
	Numeric find criteria with a range condition
	Field attributes and negated numeric find criteria
	Specifying value find criteria using an IN RANGE clause

	Defining a numeric value in exponent notation
	Specifying find criteria: special conditions
	Using comparison operators
	Operator and value type mismatch
	Interpretation of values used in find criteria

	Using Boolean operators
	Using Boolean operators to combine conditions

	Specifying find criteria: pattern matching

	9 Locking Behavior of HLI Calls
	In this chapter
	Overview
	For more information

	Locking facility
	Locking at the thread level
	Enqueuing actions
	Getting control of a resource or a record
	Specifying wait time within system limits
	Releasing a resource or record
	Locking behavior of IFSTRT calls
	Guidelines to avoid locking conflicts

	File locking
	Read-only file access in IFAM2 and IFAM4
	Using a password with update privileges
	Operating system enqueuing

	Record locking on found sets
	IFFAC and IFFIND lock in SHR mode
	IFFDV locks a value set
	IFFNDX locks in EXC mode
	IFFWOL does not lock records
	Caution when using IFFWOL
	When to use IFFWOL
	IFDSET locks a record set in EXC mode

	SHR lock on the current record
	EXC lock on the current record
	Single record enqueue (SRE) locks
	Lock pending updates (LPU) locks

	Record locking: sample processing loops
	Releasing record locks
	IFRELA releases all locks
	IFRELR releases a record set lock
	IFCMMT releases LPU locks
	Example of using IFCMMT
	IFCMTR releases all locks and ends a transaction

	Locking functions
	Codes used in the table

	10 Record Locking Conflicts
	In this chapter
	Overview
	For more information

	When a record locking conflict occurs
	Model�204 locks at different levels

	Example of record locking conflict
	IFAM2 application requires an EXEC lock
	User Language request opens CARS with read-only privileges
	IFAM2 application attempts to update CARS
	Resolution of the locking conflict

	Handling record locking conflicts
	Specifying an action when a record locking conflict occurs
	Sample host language error processing

	Controlling record locking conflicts
	Releasing records
	Processing update units
	Changes to the database

	11 Model 204 Security
	In this chapter
	Overview
	For more information

	Using Model�204 security
	Login security
	File security
	Group security
	Record security
	Field-level security
	Terminal security

	Part III Job-Related HLI Processing Requirements
	12 Tables
	In this chapter
	Overview
	For more information

	User work area
	Managing table sizes
	Specifying user table size
	Avoiding table full conditions

	File group table (FTBL)
	Names table (NTBL)
	Internal statements/quad table (QTBL)
	QTBL requirements for search functions
	QTBL requirements for retrieval and update functions
	QTBL requirements for %variables
	QTBL requirements for sort functions
	QTBL requirements for cursor functions

	Character string table (STBL)
	Temporary work table (TTBL)
	Compiler variable table (VTBL)
	VTBL requirements for search functions
	VTBL requirements for retrieval functions
	VTBL requirements for sort functions
	VTBL requirements for cursor functions
	VTBL requirements for lists and %variables

	13 CCA Datasets in HLI Jobs
	In this chapter
	Overview
	For more information

	CCA datasets for IFAM1 and IFAM4 jobs
	Required datasets
	Datasets required for a particular Model�204 facility
	Specifying a CCA dataset

	CCAPRINT file
	CCATEMP file
	Multiple uses for CCATEMP
	CCATEMP size requirements
	Using secondary CCATEMP datasets

	CCASERVR file
	CCASNAP file
	CCASTAT file
	CCAGRP file
	CCAJRNL and CCAAUDIT files
	CHKPOINT file

	14 IFAM2 CICS Processing
	In this chapter
	Overview
	For more information

	CICS program link-editing requirements
	CICS application program work areas
	Transaction work area (TWA)
	COBOL example of addressing the CICS areas
	COBOL2 example of addressing the CICS areas
	Temporary storage queue

	CICS abend handling
	How to deactivate IFAM2 abend handling
	Protecting against abend exposure
	How IFAM2 abend handling operates

	CICS abend handling: macro-level program
	CICS abend handling: command-level program

	Part IV HLI Transaction Processing and Recovery
	15 HLI Transactions
	In this chapter
	Overview
	For more information

	Transaction processing
	Update unit
	Transaction is an update unit

	Update unit boundaries
	Update units for a multiple cursor IFSTRT thread
	Update units for a single cursor IFSTRT thread
	When an update unit ends
	When a transaction backs out

	Update units: designing your application
	Placing terminal I/O points outside update units
	Unit of work for recovery

	HLI updating calls and update units
	HLI calls that end the current update unit
	HLI calls that start an undesignated update unit
	HLI calls that start a backoutable update unit

	HLI threads and transactions
	Logical relationship of threads and transactions

	IFAM1 transaction
	Single thread

	IFAM2 transactions
	One or more threads

	IFAM4 transactions
	One or more threads

	Multithreaded IFAM2 and IFAM4 transactions
	Multithreaded transaction with read-only IFSTRT threads
	Using IFCMMT in a multithreaded transaction

	Committing transactions for lock pending updates files
	Lock Pending Updates (LPU) locking mechanism
	Minimizing enqueuing conflicts
	Alternative for minimizing enqueuing conflicts

	Transaction backout facility
	Requirements for a backout

	Using the transaction backout facility
	Using IFBOUT to backout updates

	Using transaction backout logs
	Backout log
	Constraints log
	Issue frequent calls to IFCMMT
	Backout logging and CCATEMP space
	Lessening CCATEMP space requirements

	Transaction backout for LPU files
	HLI calls that do not lock records for LPU files
	Logical inconsistencies with deleted records
	Logical inconsistencies using IFFILE

	16 Recovery and Checkpointing
	In this chapter
	Overview
	For more information

	Model�204 recovery facilities
	IFAM1 roll back recovery

	Recovery Logging
	Journal
	Audit trail

	Checkpointing
	Enabling the checkpoint facility
	Four different checkpointing mechanisms

	Automatic checkpointing: CPTIME
	When the CPTIME interval expires
	Specifying a CPTIME value
	CPTIME processing steps

	Automatic checkpointing: CPSORT
	Specifying a CPSORT value
	CPSORT processing steps

	IFCHKPT checkpointing
	Differences in checkpointing procedure
	IFCHKPT processing steps

	Checkpoint processing steps: CPTIME main flow
	Checkpoint processing steps: CPTQ timer
	Checkpoint processing steps: CPTO timer
	Checkpoint processing steps: CPTIME time-out
	Checkpoint processing steps: CPSORT main flow
	Checkpoint processing steps: CPSORT time-out
	Checkpoint Processing steps: IFCHKPT main flow
	Checkpoint processing steps: IFCHKPT time-out
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Index

